编写高质量代码改善C#程序的157个建议——建议20:使用泛型集合代替非泛型集合

建议20:使用泛型集合代替非泛型集合

在建议1中我们知道,如果要让代码高效运行,应该尽量避免装箱和拆箱,以及尽量减少转型。很遗憾,在微软提供给我们的第一代集合类型中没有做到这一点,下面我们看ArrayList这个类的使用情况:

            ArrayList al=new ArrayList();
            al.Add(0);
            al.Add(1);
            al.Add("mike");
            foreach (var item in al)
            {
                Console.WriteLine(item);
            }

上面这段代码充分演示了我们可以将程序写得多么糟糕。首先,ArrayList的Add方法接受一个object参数,所以al.Add(1)首先会完成一次装箱;其次,在foreach循环中,待遍历到它时,又将完成一次拆箱。在这段代码中,整形和字符串作为值类型和引用类型,都会先被隐式地强制转型为object,然后在foreach循环中又被转型回来。同时,这段代码也是非类型安全的:我们然ArrayList同时存储了整型和字符串,但是缺少编译时的类型检查。虽然有时候需要有意这样去实现,但是更多的时候,应该尽量避免。缺少类型检查,在运行时会带来隐含的Bug。集合类ArrayList如果进行如下所示的运算,就会抛出一个IvalidCastException:

            ArrayList al=new ArrayList();
            al.Add(0);
            al.Add(1);
            al.Add("mike");
            int t = 0;
            foreach (int item in al)
            {
                t += item;
            }

ArrayList同时还提供了一个带ICollection参数的构造方法,可以直接接收数组,如下所示:

var intArr = new int[] {0, 1, 2, 3};
ArrayList al=new ArrayList(intArr);

该方法内部实现一样糟糕,如下所示(构造方法内部最终调用了下面的InsertRange方法):

public virtual void InsertRange(int index, ICollection c)
{
    if (c == null)
    {
        throw new ArgumentNullException("c", Environment.GetResourceString("ArgumentNull_Collection"));
    }
    if ((index < 0) || (index > this._size))
    {
        throw new ArgumentOutOfRangeException("index", Environment.GetResourceString("ArgumentOutOfRange_Index"));
    }
    int count = c.Count;
    if (count > 0)
    {
        this.EnsureCapacity(this._size + count);
        if (index < this._size)
        {
            Array.Copy(this._items, index, this._items, index + count, this._size - index);
        }
        object[] array = new object[count];
        c.CopyTo(array, 0);
        array.CopyTo(this._items, index);
        this._size += count;
        this._version++;
    }
}

概括来讲,如果对大型集合进行循环访问、转型或装箱和拆箱操作,使用ArrayList这样的传统集合对效率影响会非常大。鉴于此,微软提供了对泛型的支持。泛型使用一对<>括号将实际类型括起来,然后编译器和运行时会完成剩余的工作。微软也不建议大家使用ArrayList这样的类型了,转而建议使用它们的泛型实现,如List<T>。

注意,非泛型集合在System.Collections命名空间下,对应的泛型集合则在System.Collections.Generic命名空间下。

建议一开始的那段代码的泛型实现为:

            List<int> intList = new List<int>();
            intList.Add(1);
            intList.Add(2);
            //intList.Add("mike");
            foreach (var item in intList)
            {
                Console.WriteLine(item);
            }

代码中被注释的那一行不会被编译通过,因为“mike"不是整型,这里就体现了类型安全的特点。

下面比较了非泛型集合和泛型集合在运行中的效率:

       static void Main(string[] args)
        {
            Console.WriteLine("开始测试ArrayList:");
            TestBegin();
            TestArrayList();
            TestEnd();
            Console.WriteLine("开始测试List<T>:");
            TestBegin();
            TestGenericList();
            TestEnd();
        }
        static int collectionCount = 0;
        static Stopwatch watch = null;
        static int testCount = 10000000;
        static void TestBegin()
        {
            GC.Collect();   //强制对所有代码进行即时垃圾回收
            GC.WaitForPendingFinalizers();  //挂起线程,执行终结器队列中的终结器(即析构方法)
            GC.Collect();   //再次对所有代码进行垃圾回收,主要包括从终结器队列中出来的对象
            collectionCount = GC.CollectionCount(0);    //返回在0代码中执行的垃圾回收次数
            watch = new Stopwatch();
            watch.Start();
        }

        static void TestEnd()
        {
            watch.Stop();
            Console.WriteLine("耗时:" + watch.ElapsedMilliseconds.ToString());
            Console.WriteLine("垃圾回收次数:" + (GC.CollectionCount(0) - collectionCount));
        }

        static void TestArrayList()
        {
            ArrayList al = new ArrayList();
            int temp = 0;
            for (int i = 0; i < testCount; i++)
            {
                al.Add(i);
                temp = (int)al[i];
            }
            al = null;
        }

        static void TestGenericList()
        {
            List<int> listT = new List<int>();
            int temp = 0;
            for (int i = 0; i < testCount; i++)
            {
                listT.Add(i);
                temp = listT[i];
            }
            listT = null;
        }

输出为:

开始测试ArrayList:

耗时:2375

垃圾回收次数:26

开始测试List<T>:

耗时:220

垃圾回收次数:5

转自:《编写高质量代码改善C#程序的157个建议》陆敏技

时间: 2024-08-02 02:51:29

编写高质量代码改善C#程序的157个建议——建议20:使用泛型集合代替非泛型集合的相关文章

编写高质量代码改善C#程序的157个建议——建议45:为泛型类型参数指定逆变

建议45:为泛型类型参数指定逆变 逆变是指方法的参数可以是委托或者泛型接口的参数类型的基类.FCL4.0中支持逆变的常用委托有: Func<int T,out TResult> Predicate<in T> 常用委托有: IComparer<in T> 下面例子演示了泛型类型参数指定逆变所带来的好处: class Program { static void Main() { Programmer p = new Programmer { Name = "Mi

编写高质量代码改善C#程序的157个建议——建议27:在查询中使用Lambda表达式

建议27:在查询中使用Lambda表达式 LINQ实际上是基于扩展方法和Lambda表达式的.任何LINQ查询都能通过扩展方法的方式来代替. var personWithCompanyList = from person in personList select new { PersonName = person.Name, CompanyName = person.CompanyID==0?"Micro":"Sun" }; foreach (var item in

编写高质量代码改善C#程序的157个建议——建议26:使用匿名类型存储LINQ查询结果

建议26:使用匿名类型存储LINQ查询结果 从.NET3.0开始,C#开始支持一个新特性:匿名类型.匿名类型有var.赋值运算符和一个非空初始值(或以new开头的初始化项)组成.匿名类型有如下基本特性: 即支持简单类型也指出复杂类型.简单类型必须是一个非空初始值,复杂类型则是一个以new开头的初始化项. 匿名类型的属性是只读的,没有属性设置器,它一旦被初始化就不可更改. 如果两个匿名类型的属性值相同,那么就认为这两个匿名类型相等. 匿名类型可以再循环中用作初始化器. 匿名类型支持智能感知. 匿名

编写高质量代码改善C#程序的157个建议——建议12: 重写Equals时也要重写GetHashCode

建议12: 重写Equals时也要重写GetHashCode 除非考虑到自定义类型会被用作基于散列的集合的键值:否则,不建议重写Equals方法,因为这会带来一系列的问题. 如果编译上一个建议中的Person这个类型,编译器会提示这样一个信息: “重写 Object.Equals(object o)但不重写 Object.GetHashCode()” 如果重写Equals方法的时候不重写GetHashCode方法,在使用如FCL中的Dictionary类时,可能隐含一些潜在的Bug.还是针对上一

编写高质量代码改善C#程序的157个建议——建议13: 为类型输出格式化字符串

建议13: 为类型输出格式化字符串 有两种方法可以为类型提供格式化的字符串输出.一种是意识到类型会产生格式化字符串输出,于是让类型继承接口IFormattable.这对类型来 说,是一种主动实现的方式,要求开发者可以预见类型在格式化方面的要求.更多的时候,类型的使用者需为类型自定义格式化器,这就是第二种方法,也是最灵活 多变的方法,可以根据需求的变化为类型提供多个格式化器.下面就来详细介绍这两种方法. 最简单的字符串输出是为类型重写ToString方法,如果没有为类型重写该方法,默认会调用Obj

编写高质量代码改善C#程序的157个建议——建议90:不要为抽象类提供公开的构造方法

建议90:不要为抽象类提供公开的构造方法 首先,抽象类可以有构造方法.即使没有为抽象类指定构造方法,编译器也会为我们生成一个默认的protected的构造方法.下面是一个标准的最简单的抽象类: abstract class MyAbstractClass { protected MyAbstractClass(){} } 其次,抽象类的方法不应该是public或internal的.抽象类设计的本意是让子类继承,而不是用于生成实例对象的.如果抽象类是public或internal的,它对于其它类型

编写高质量代码改善C#程序的157个建议——建议85:Task中的异常处理

建议85:Task中的异常处理 在任何时候,异常处理都是非常重要的一个环节.多线程与并行编程中尤其是这样.如果不处理这些后台任务中的异常,应用程序将会莫名其妙的退出.处理那些不是主线程(如果是窗体程序,那就是UI主线程)产生的异常,最终的办法都是将其包装到主线程上. 在任务并行库中,如果对任务运行Wait.WaitAny.WaitAll等方法,或者求Result属性,都能捕获到AggregateException异常.可以将AggregateException异常看做是任务并行库编程中最上层的异

编写高质量代码改善C#程序的157个建议——建议89:在并行方法体中谨慎使用锁

建议89:在并行方法体中谨慎使用锁 除了建议88所提到的场合,要谨慎使用并行的情况还包括:某些本身就需要同步运行的场合,或者需要较长时间锁定共享资源的场合. 在对整型数据进行同步操作时,可以使用静态类Interlocked的Add方法,这就极大地避免了由于进行原子操作长时间锁定某个共享资源所带来的同步性能损耗.回顾建议83中的例子. static void Main(string[] args) { int[] nums = new int[] { 1, 2, 3, 4 }; int total

编写高质量代码改善C#程序的157个建议——建议87:区分WPF和WinForm的线程模型

建议87:区分WPF和WinForm的线程模型 WPF和WinForm窗体应用程序都有一个要求,那就是UI元素(如Button.TextBox等)必须由创建它的那个线程进行更新.WinForm在这方面的限制并不是很严格,所以像下面这样的代码,在WinForm中大部分情况下还能运行(本建议后面会详细解释为什么会出现这种现象): private void buttonStartAsync_Click(object sender, EventArgs e) { Task t = new Task(()