BP网络

一. 网络结构


经典的BP网络,其具体结构如下:

请特别注意上面这个图的一些符号说明如下:

二.  学习算法

1. 信号的前向传递过程

请特别注意上述公式中的下标,这里,权值矩阵包含了神经元节点本身的偏置,所以权值矩阵多了一列。

   2.   误差反向传导过程

三.  小结

信号的前向传递和误差反向传递过程都可以用递归公式描述。其实,就几个公式而已,把相关的几个重要公式再次总结如下:


BP网络,布布扣,bubuko.com

时间: 2024-10-22 09:54:34

BP网络的相关文章

关于BP网络的一些总结

背景 前段时间,用过一些模型如vgg,lexnet,用于做监督学习训练,顺带深入的学习了一下相关模型的结构&原理,对于它的反向传播算法记忆比较深刻, 就自己的理解来描述一下BP网络. 关于BP网络的整体简述 BP神经网络,全程为前馈神经网络,它被用到监督学习中的主体思想是(我们假定我们这里各个层Layer次间采用的是全链接): 通过各个Layer层的激励和权值以及偏置的处理向前传递,最终得到一个预期的值,然后通过标签值和预期的值得到一个残差值,残差值的大小反映了预期值和残差值的偏离程度,然后使用

BP网络的代码分析

去年在学习Stanford的ML课程的时候整理过一篇BP神经网络原理的解析,链接地址,不过没有对它的code实现作太多的解读,只是用MATLAB的工具箱做了实验. Jeremy Lin 具体的原理性资料可以参考: [1] BP神经网络解析 http://blog.csdn.net/linj_m/article/details/9897839 [2] Tom M.Mitchell 机器学习教程  地址 BP网络算法流程: 从上面的算法流程可以看出来,BP神经网络的步骤并不多,如果你之前就了解BP神

Neural Network based on Eorr Back Propagation典型BP网络c++实现

参考资料:人工神经网络-韩力群PPT 看了一些关于基于神经网络的语言模型, 与传统语言模型相比, 除了计算量让人有点不满意之外, 不需要额外的平滑算法, 感觉它们的效果让人惊讶. 这些网络里面都能看到BP的影子, 可以说BP网络是最基本的, 掌握扎实了, 对其他结构理解会更深刻, 于是早在学习语言模型之前我自己曾经用c++写过一个简单的BP网络,虽然功能简单,只有最基本的三层结构,但让自己对误差反传理解的更深刻.那个时候自己还没开始写博客, 现在把以前的代码放上来吧, 那个时候写代码没考虑任何优

BP网络中的反向传播

本文的主要参考:How the backpropagation algorithm works 下面是BP网络的参数结构示意图 首先定义第l层网络第j个神经元的输出(activation) 为了表示简便,令 则有alj=σ(zlj),其中σ是激活函数 定义网络的cost function,其中的n是训练样本的个数. 下面主要介绍使用反向传播来求取cost function相对于权重wij和偏置项bij的导数. 显然,当输入已知时,cost function只是权值w和偏置项b的函数.这里为了方便

我对BP网络的简单的理解

最近在学习tf的神经网络算法,十多年没有学习过数学了,本来高中数学的基础,已经彻底还给数学老师了.所以我把各种函数.公式和推导当做黑盒子来用,理解他们能做到什么效果,至于他们是如何做到的,暂时不去深究,最多知道哪个公式的效果会比哪个更适合哪个场合. BP网络应该是最入门级的算法了. #用伪代码描述下大概如此 # 单层BP x = tf.placeholder(tf.float32,[None,256]) y = tf.placeholder(tf.float32,[None,10]) w = t

BP网络简单实现

目录 BP算法的简单实现 Linear 全连接层 ReLu MSELoss 交叉熵损失函数 BP算法的简单实现 """ BPnet 简易实现 约定输入数据维度为(N, input_size) 输出数据维度为(N, output_size) """ import pickle import os, sys import numpy as np import matplotlib.pyplot as plt 首先创建一个父类Fun, 主要定义了 fo

BP网络实例(Iris数据)

将Iris数据分成训练与测试两部分,这批Iris花可分为3个品种,分别用123代表,现需要对其进行分类.不同品种的Iris花的花萼长度.花萼宽度.花瓣长度.花瓣宽度会有差异.我们现有一批已知品种的Iris花的花萼长度.花萼宽度.花瓣长度.花瓣宽度的数据. 大致流程: 读取训练数据→归一化→构造期望输出矩阵(01矩阵)→创建神经网络并设置参数→通过输入与期望输出值训 练→读取测试数据并归一化→仿真 clc [f1,f2,f3,f4,class]=textread('flodata.txt','%f

简单的RNN和BP多层网络之间的区别

先来个简单的多层网络 RNN的原理和出现的原因,解决什么场景的什么问题 关于RNN出现的原因,RNN详细的原理,已经有很多博文讲解的非常棒了. 如下: http://ai.51cto.com/art/201711/559441.htm 更多的例子可以百度了解 为什么我写这篇博客 主要是我从自己学习理解RNN的时候,开始有一些困难,书上讲的也是模模糊糊的,原理讲解的很多,但是代码的关键点描述不太清楚,自己反复揣测以后,终于有了一些理解,记录下来,一方面记录自己的成长过程,另外一方面可以让跟我一样有

用BP人工神经网络识别手写数字

http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档 在手机打开 赖勇浩( http://laiyonghao.com ) 这是我读工