Ising模型(伊辛模型)

Ising模型(伊辛模型)是一个最简单且能够提供非常丰富的物理内容的模型。可用于描写叙述非常多物理现象,如:合金中的有序-无序转变、液氦到超流态的转变、液体的冻结与蒸发、玻璃物质的性质、森林火灾、城市交通等。Ising模型的提出最初是为了解释铁磁物质的相变,即磁铁在加热到一定临界温度以上会出现磁性消失的现象,而降温到临界温度下面又会表现出磁性。这样的有磁性、无磁性两相之间的转变。是一种连续相变(也叫二级相变)。Ising模型如果铁磁物质是由一堆规则排列的小磁针构成,每一个磁针仅仅有上下两个方向(自旋)。相邻的小磁针之间通过能量约束发生相互作用。同一时候又会因为环境热噪声的干扰而发生磁性的随机转变(上变为下或反之)。涨落的大小由关键的温度參数决定。温度越高,随机涨落干扰越强。小磁针越easy发生无序而剧烈地状态转变。从而让上下两个方向的磁性相互抵消,整个系统消失磁性。如果温度非常低,则小磁针相对宁静,系统处于能量约束高的状态,大量的小磁针方向一致,铁磁系统展现出磁性。

科学家对该模型的广泛兴趣还源于它是描写叙述相互作用的粒子(或者自旋)最简单的模型。Ising模型是一个很easy的模型,在一维、二维、三维的每一个格点上占领一个自旋。

自旋是电子的一个内部性质。每一个自旋在空间有两个量化方向。即其指向能够向上或者向下。虽然该模型是一个最简单的物理模型。眼下仅有一维和二维的精确解。

考虑一维Ising模型。M个自旋排成一排,每一个自旋与其左右两个近期邻的自旋之间有相互作用。简单起见,我们仅仅考虑倾向于使近邻自旋的方向一致的相互作用。二维正方Ising模型就是由N个同样的自旋排。每一个自旋不但与其左右两个近期邻的自旋相互作用,并且与前后相邻的自旋排中两个近期邻的自旋相互作用,project了 一个二维的自旋阵列。

三维立方Ising模型就是有L个同样的二维自旋阵列,每一个自旋与其左右、前后、上下六个近期邻的自旋相互作用。不难发现。随着维度的添加。每一个自旋的近期邻自旋树木添加。与周围自旋的相互作用也在增强。

可是,系统的演化并不全然由总能量决定。因为小磁针处于噪声环境中,热涨落又会引起小磁针的状态随机反转。

我们能够用温度来衡量这样的环境影响的随机性。T越高,则小磁针发生反转的概率就会越大。

这样,有两种力作用在小磁针上,一种力来源于小磁针邻居以及外场对它的影响,这样的影响倾向于使得相邻的邻居彼此状态一致以及与外场尽量一致。即尽量使得系统的总能量达到最小。第二种力则来源于环境噪声的扰动。它迫使小磁针无视邻居的作用而发生随机的状态反转。

于是。每一个小磁针就挣扎于这两种不同的力量之间。不难想象。假如温度T趋于0,则每一个小磁针都会与外场相一致。那么。终于系统将处于全是+1或者全是-1的状态(取决于外场H是正还是负)。

假如T特别高,而相互作用强度J特别小,则邻居间的作用能够忽略,每一个小磁针都全然随机地取值。

这样,整个ISING模型就有两个外生给定的參数来表示环境的温度和磁场强度。

在村民的比喻中,温度相当于村民进行观点选择的自由程度。温度越高,村民选择观点越随机,而不受自己周围邻居的影响;否则村民的选择严重依赖于邻居和媒体宣传。

时间: 2024-10-20 19:24:24

Ising模型(伊辛模型)的相关文章

”乳罩图“ 的完美匹配:高温展开与顶点膨胀技巧

本文的目的是通过一个例子来介绍统计力学中精确可解模型的两个经典方法:高温展开和顶点膨胀. 问题是这样的:考虑这样一张非常类似 "bra" 的图: 注意这个图不是平面图!上面两条实线的边与下面两条实线的边分别是粘在一起的,左边两条实线的边和右边的两条实线的边也是分别粘合的:虚线部分不是边,只是用来描述粘合定向的.因此这个图的每个顶点的度数都是 3. 想象它的立体图:这是一个乳罩,已经穿戴在某个美女身上,则上下和左右的实线边相当于系的绳子. 问这个图有多少不同的完美匹配? 答案是 $64$

用caffe给图像的混乱程度打分

Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还真没有很现成的例子.这篇举个简单的小例子说明一下如何用Caffe和卷积神经网络(CNN: Convolutional Neural Networks)做基于回归的应用. 原理 最经典的CNN结构一般都是几个卷积层,后面接全连接(FC: Fully Connected)层,最后接一个Softmax层输

浅析 Hinton 最近提出的 Capsule 计划

http://blog.csdn.net/omnispace/article/details/78061776 这有可能也是知乎上面分析介绍深度学习最为全面的文章之一.希望做物理的,做数学的,做生物的,做化学的,做计算机,包括做科幻的都能看的很开心. Hinton 以"深度学习之父" 和 "神经网络先驱" 闻名于世,其对深度学习及神经网络的诸多核心算法和结构(包括"深度学习"这个名称本身,反向传播算法,受限玻尔兹曼机,深度置信网络,对比散度算法,

理论物理与数学

厉害的理论物理学家都是数学家. 玻尔兹曼.吉布斯等等这些人 没有数学,物理就寸步难行 杨振宁的规范场理论,在格里菲斯都粒子物理导论里,我看过规范场的推导,全是数学. 二维Ising模型的精确解等等,都是数学 很多都是这些天才解出来的. 我虽然智商一般,但是也能做一个科学的一般研究者.也许研究第一性原理计算这些,只要有些数学就挺好的.对中国的物理有贡献. 原文地址:https://www.cnblogs.com/quantum-condensed-matter-physics/p/12368273

用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪

前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个添加了一定椒盐噪声(Salt-and-pepper Noise)(假设噪声比例不超过 10%)的二值图(Binary Image)去噪. 原图 添加 10% 椒盐噪声的图 建模 下文中的数学表示: yi:噪声图中的像素 xi:原图中的像素,对应噪声图中的 yi 既然噪声图是从原图添加噪声而来,我们拥

基于位置信息的聚类算法介绍及模型选择

百度百科 聚类:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异."物以类聚,人以群分",在自然科学和社会科学中,存在着大量的分类问题.聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法.聚类分析起源于分类学,但是聚类不等于分类.聚类与分类的不同在于,聚类所要求划分的类是未知的. 分类和聚类算法一直以来都是数据挖掘,机器学习领域的热门课题,因此产生了众多的

Laravel5.1 模型--ModelFactory

今天要说的是模型工厂,它是可以快速生成一些测试数据的东西,之前我们介绍过Seeder,当我们使用模型访问数据时 可以用模型工厂搭配Seeder使用. 1 编写一个ModelFactory ModelFactory的路径在 database/factories/ 下: // 这是系统自带的工厂 $factory->define(App\User::class, function ($faker) { return [ 'name' => $faker->name, 'email' =>

15.1-全栈Java笔记:Java事件模型是什么?事件控制的过程有哪几步??

应用前边两节上一章节的内容,大家可以完成一个简单的界面,但是没有任何的功能,界面完全是静态的,如果要实现具体功能的话,必须要学习事件模型. 事件模型简介及常见事件模型 对于采用了图形用户界面的程序来说,事件控制是非常重要的. 一个源(事件源)产生一个事件并把它(事件对象)送到一个或多个监听器那里,监听器只是简单地等待,直到它收到一个事件,一旦事件被接收,监听器将处理这些事件. 一个事件源必须注册监听器以便监听器可以接收关于一个特定事件的通知. 每种类型的事件都有其自己的注册方法,一般形式为: v

11.python并发入门(part13 了解事件驱动模型))

一.事件驱动模型的引入. 在引入事件驱动模型之前,首先来回顾一下传统的流水线式编程. 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结束 每一个代码块里是完成各种各样事情的代码,但编程者知道代码块A,B,C,D...的执行顺序,唯一能够改变这个流程的是数据.输入不同的数据,根据条件语句判断,流程或许就改为A--->C--->E...--->结束.每一次程序运行顺序或许都不同,但它的控制流程是由输入数据和