组合数学及其应用——polya计数

在处理类似下面的问题中,一般的计数方法会出现问题:假如你要用红、蓝两种颜色给一个正四面体的四个顶点着色,试问存在多少种不同的着色方案?

在高中我们常用的方法是模拟涂色过程,分情况讨论,然后基于分步乘法原理。但是在那里没有考虑几何体通过旋转等操作带来的对称性,在本文中,我们就来介绍一种专门处理这类问题的工具——Polya计数。

首先我们要做的是引入一些基本的概念。

置换:

关于置换更多的细节我们在《抽象代数基础教程》中继续讨论,这里我们只需简单的了解其概念即可。

关于置换还需要了解的就是它的合乘运算。

置换这个工具可以方便我们符号化图形的对称分析过程,下面给出要给非常简单的例子,以帮助理解置换如何描述几何体的对称。

考察如下的正方形。

(一个正方形,四个顶点为1234)

我们需要去思考,如何利用置换来描述那些运动,使得正方形位置没变(但是对应标号的顶点可能发生了移动)。

容易看到符合要求的运动有两类。

1)  将正方形绕中心旋转(取顺时针即可)0°、90°、180°、270°.

2)  将正方形按照两条对角线和两条对边中点连线,立体得翻转180°。

那么我们可以发现运动前的正方形顶点序号和运动后的,其实就形成了一个置换。

此时我们开始给出染色方案的数学描述。

基于以上的铺垫,我们可以给出Burnside引理,用于给出一个计数非等价着色数的公式。

在给出Burnside定理之后,我们下面结合几个简单的题目,来加强对这个定理的理解。

问题到这里,就得到很大的改观,之前我们需要基于置换群和着色集合,进行遍历考察来计算Burnside定理和式的一般项,而现在我们只需要,分析置换群G中的每个置换,然后结合颜色数,就可以进行计算了。

我们还需要进一步努力,因为从定理4可以看到,我们用k种颜色形成着色集合,是没有显示颜色的出现次数的,而如果规定某种颜色的出现的次数,我们应该如何处理呢?

最后我们给出立方体的非等价的染色分析,在一般带的考察polya的题目中容易考察但是其对称群较为繁冗容易出错,因此最好一次分析之后记住结论。

例子(立方体的顶点与面的着色):

用制定数量的颜色对立方体的顶点和面进行着色,尝试求立方体的对称群和非等价的着色方案数目。

考察立方体的对称操作,它们一共可分为如下的四种类型共24种对称:

(1) 恒等对称1个。

(2) 固定一对对立面进行旋转:

(a)90°

(b)180°

(c)270°

由于共有三对对立面,所以上面各有3个共9个。

(3) 绕一对对边重点连线旋转180°,由于有6对,这里有6个对称。

(4) 绕对顶点进行旋转:

(a)120°

(b)240°

可以看到一个立方体的对称群友24个置换,下面我们只需要考察每个置换f的type(f),以期得到立方体的非等价染色的生成函数。

同理我们可以对面对称群进行完全一样的讨论,结果如下:

时间: 2024-10-09 07:33:16

组合数学及其应用——polya计数的相关文章

HDU 4633(polya计数

题目:用k种颜色给一个魔方染色,可以染每个面的9个小矩形,12条棱,8个顶点(总之就是有74个能染的地方),空间旋转后一样的视为相同,问有多少种不同的染色方案. 思路:裸的polya计数,但是这个立方体的对称群本来就很容易弄错...<组合数学>里有个例题提到立方体的对称群有24个元素,分别是: (1)恒等变换. (2)以两个相对面的中心相连作为对称轴,旋转(i)90,(ii)180,(iii)270度,每种有3个.共9种. (3)以两个相对棱的中点连线为对称轴翻转180度,有6种. (4)固定

UVALive - 3641 Leonardo&#39;s Notebook(polya计数)

题意:给出26个大写字母的置换B,问是否存在一个置换A,使A*A=B? 两个长度为N的相同循环相乘,当N为奇数时结果也是一个长度为N的循环,当N为偶数时分裂为两个长度为N/2的循环.相反,对于一个任意长度为N的奇数循环B,都能找到一个长度为N的循环A使得A*A=B,对于任意两个长度为N(N不一定为偶数)的不相交循环B和C,都能找到一个长度为2N的循环A使得A*A=B*C. 于是只要判断置换B里循环长度相同的且都为偶数(2,4,6, 8.....)的循环个数是不是都为偶数(偶数就能两两配对),只要

[ACM] POJ 2154 Color (Polya计数优化,欧拉函数)

Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7630   Accepted: 2507 Description Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of th

poj 2154 Color(polya计数 + 欧拉函数优化)

http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目,旋转后一样的属于同一种,结果模p. n个珠子应该有n种旋转置换,每种置换的循环个数为gcd(i,n).如果直接枚举i,显然不行.但是我们可以缩小枚举的数目.改为枚举每个循环节的长度L,那么相应的循环节数是n/L.所以我们只需求出每个L有多少个i满足gcd(i,n)= n/L,就得到了循环节数为n/L的个数.重点就是求出这样的i的个数. 令cnt = gcd(i,n) =

[ACM] POJ 2409 Let it Bead (Polya计数)

Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4434   Accepted: 2916 Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is b

[ACM] POJ 1286 Necklace of Beads (Polya计数,直接套公式)

Necklace of Beads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6547   Accepted: 2734 Description Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are pro

Polya计数

Let it Bead Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5365   Accepted: 3585 Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is b

sgu294:He&#39;s Circles(polya计数+高精度)

题目大意: 一个长度为 n(1≤n≤200000) 的环由 0 or 1 组成,求有多少本质不同的环. 分析: (这题有可能更侧重于考高精度) 考虑循环节的个数只可能为 n 的约数,且循环节的个数为 d 的置换会出现 φ(n/d) 次,所以答案就是: Σ2dφ(n/d)n (好大的公式...) 高精度压压位,优化一下常数就过了. AC code: #include <bits/stdc++.h> #define pb push_back #define mp make_pair #define

hdu 1812 Count the Tetris polya计数

哈哈哈,简单polya,公式自己推导. 不过这题需要用到大数,很久没写Java,调了好久. import java.math.*; import java.util.*; import java.io.*; public class Main{ public static void main(String args[]){ Scanner cin=new Scanner(System.in); int n; BigInteger c; while(cin.hasNextInt()) { BigI