3n+1问题

猜想: 对于任意大于1的自然数n,若n为奇数,则将n变为3n+1,否则变为n的一半。
    经过若干次这样的变换,一定会使n变为1。例如3->10->5->16->8->2->1。
    输入n,输出变换的次数。n≤10^9。
     样例输入:3
     样例输出:7

不假思索的写出下面的代码:

#include<stdio.h>
int main(void)
{
	int n;
	int count=0;

	scanf("%d", &n);

	while(n > 1)
	{
		if(n%2 != 0)
			n = 3*n + 1;
		else
			n /= 2;
		count++;
	}

	printf("%d\n", count);

    return 0;
}

然而,程序正确吗?很不幸,如果输入987654321,答案为1,这显然是错误的。通过调试或者在循环体中用printf语句打印出n的值,看到n的值为负数,导致一次循环后程序退出。从这里可以获悉n的值溢出了,因为整型最大值为2^31-1 = 2147483647,大约为21亿,而由题意n的最大值为10亿(10^9),所以在n的值颇大且为奇数时乘以3是危险的,会导致溢出。

解决方案如下:

因为奇数*奇数=奇数,所以经过n=3*n+1的计算后,n的值必然是偶数,并且下次循环必然做运算n/=2,所以这里可以合并这两步,也就是n为奇数的情况下做运算n=floor(1.5*n+0.5),由于double值的误差问题,我们可以用n=floor(1.5*n+1)(floor函数接收double类型的参数,返回不大于给定参数的最大整形数,返回值类型为double),将取整后的double值赋给整形从而丢弃小数点。

修改后的程序如下:

#include<stdio.h>
#include<math.h>
int main(void)
{
	int n;
	int count=0;

	scanf("%d", &n);

	while(n > 1)
	{
		if(n%2 != 0)
        {
            n = floor(1.5*n + 1);
            count += 2;
        }
		else
		{
		    n = n / 2;
		    count++;
		}
	}

	printf("%d\n", count);

    return 0;
}

再次用987654321测试,得到结果180次。再者,如果对n的限制为整形int的范围,该程序就不能完成要求了,那么我们可以使用long long int。

参考资料:《算法竞赛入门经典》——刘汝佳

最后一些疑惑(望看到的高手能解答一二,吾将不胜感激):

1、这里第二个程序是我依照作者的提示写的,自认应该正确吧:-),但是还是有一些疑惑,比如我们考虑了第一次n的输入值,但是循环

  中的第二次,第三次...呢?我们如何说明以后循环的值不会发生溢出呢?

  比如开始时n的值为7,那么一次循环后其值为11,而11>7。也就是说二次循环的值大于7。

2、再者,我们如何知道经过若干次的变换后一定会得到1呢,也就是说我们如何知道函数收敛呢?嗯...这貌似是一个数学问题啊。

时间: 2024-10-11 12:03:53

3n+1问题的相关文章

PAT 乙级 1005 继续(3n+1)猜想 (25) C++版

1005. 继续(3n+1)猜想 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重

PAT (Basic Level) Practise 1001. 害死人不偿命的(3n+1)猜想

1001. 害死人不偿命的(3n+1)猜想 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证

3038 3n+1问题——http://codevs.cn/problem/3038/

第一部分:题目 题目描述 Description 3n+1问题是一个简单有趣而又没有解决的数学问题.这个问题是由L. Collatz在1937年提出的.克拉兹问题(Collatz problem)也被叫做hailstone问题.3n+1问题.Hasse算法问题.Kakutani算法问题.Thwaites猜想或者Ulam问题. 问题如下: (1)输入一个正整数n: (2)如果n=1则结束: (3)如果n是奇数,则n变为3n+1,否则n变为n/2: (4)转入第(2)步. 克拉兹问题的特殊之处在于:

1001. 害死人不偿命的(3n+1)猜想

1 /* 2 * Main.c 3 * 1001. 害死人不偿命的(3n+1)猜想 4 * Created on: 2014年8月27日 5 * Author: Boomkeeper 6 *********测试通过******* 7 */ 8 9 #include <stdio.h> 10 11 int main(void){ 12 13 int n;//题目中n 14 int count=0;//计数 15 16 scanf("%d",&n); 17 18 whi

The 3n + 1 problem

The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 50648   Accepted: 16059 Description Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In th

PAT 乙级 1005. 继续(3n+1)猜想 (25)

1005. 继续(3n+1)猜想 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这4个数已经在验证3的时候遇到过了,我们称

1001. 害死人不偿命的(3n+1)猜想 (15)

卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展…… 我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下

PAT乙级1001. 害死人不偿命的(3n+1)猜想 (15)

卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展…… 我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下

poj-1207 THE 3n+1 problem

Description Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all po