浅谈C#中的斐波拉契数列

突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处!

斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那契发现的。这种数列指的是这样一个数列:0、1、1、2、3、5、8、13、21、

34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)。

用C#实现斐波拉契数列的代码:

Console.Write("请输入一个长度:");
int n = int.Parse(Console.ReadLine());
int[] nums = new int[n];
for (int i = 0; i < nums.Length; i++)
{
if (i <= 1)
{
nums[i] = 1;
}
else
{
nums[i] = nums[i - 1] + nums[i - 2];
}
Console.Write(nums[i] + "\t");
}
Console.ReadLine();

当输入一个数字,然后后看到出现的一串有趣的数列,我相信大家还是很有感觉吧!

时间: 2024-10-10 17:07:23

浅谈C#中的斐波拉契数列的相关文章

在c#中编写斐波拉契数列程序

思路:首先因为输出的是一个数列,又因为不定长,所以要见一个集合来装数列,其次确定第一个数和第二个数都为1,然后根据斐波拉契数列的特点,确定是一个循环语句,再根据从第三位开始,每个数字都是前两个数的和的特点写出代码.代码如下: while(true){Console.Write("请输入斐波拉契数列的长度:");int len = int.Parse(Console.ReadLine());int[] array = new int[len];if (len < 3){Consol

递归1.2用递归函数来实现获取斐波拉契数列中第n个数字的值

用递归函数来实现获取斐波拉契数列中第n个数字的值 ps(斐波那契数列:从3三个数开始,后一个数等于前面两个数的和: 0,1,1,2,3,5,8,13,21,34,55,89,144……) def add(n): if n > 2: return (add(n-1) + add(n-2)) if n == 2: return 1 if n == 1: return 0 b = int(input("请输入一个数字")) print(add(b)) 结果输出: 请输入一个数字10 3

青蛙跳台阶问题-斐波拉契数列

题目1:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.求总共有多少种跳法 首先我们考虑最简单的情况,加入只有1级台阶,那显然只有一种跳法,如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级:另外一种就是一次跳2级 现在我们来讨论一般情况.我们把n级台阶时的跳法看成是n的函数,记为f(n).当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1):另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的

斐波拉契数列的计算方法

面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long Fib(unsigned int n) { if(n<=0) return 0; if(n==1) return 1; return Fib(n-1) + Fib(n-2); } 缺陷: 当n比较大时递归非常慢,因为递归过程中存在很多重复计算. 二.改进思路: 应该采用非递归算法,保存之前的计算结

斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - 1) + F(n - 2),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F(0) = 1. 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 1000000007. 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为

斐波拉契数列问题

古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? package Test; /** * 斐波拉契数列问题(兔子问题) * 可推导递推公式 * f(n+1)=f(n)+f(n-1) * */ public class FibonacciNumeral { public static void main(String[] args) { System.out.println("第一个月的兔子为1"

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

斐波拉契数列应用

斐波拉契数列的应用实例 什么是斐波拉契数列(Fibonacci sequence)?将其前几项写出来就是:0 1 1 2 3 5 8 13 21....... 观察不难发现其规律是,从第二项起,每一项的值都为前两项的和.而且这个数列有趣的地方就在于这个非常特殊的规律.它是有通项公式的,但是推导与主题无关,而且也几乎用不上,所以就不多叙述. long fi(int n) { if(n==1||n==2) return 1; else return fi(n-1)+fi(n-2); } 但是如果这样

斐波拉契数列的递归、非递归、公式法多种方法实现

实现斐波拉契数列:1,1,2,3,5,8...,当n>=3时,f(n)=f(n-1)+f(n-2). 解:求解斐波拉契数列方法很多,这里提供了4种实现方法和代码,由于第5种数学公式方法代码太过繁琐,只做简单介绍 方法一:递归调用,每次递归的时候有大量重复计算,效率低,可将其调用的过程转化成一颗二叉树进行分析,二叉树的总结点个数不超过(2^n-1)个,由于其是不完全二叉树,那么函数计算的次数必小于(2^n-1),时间复杂度为O(2^n):递归调用的深度为n,空间复杂度为O(n) 方法二:非递归数组