假设检验的基本原理就是小概率事件原理,即观测小概率事件在假设成立的情况下是否发生。如果在一次试验中,小概率事件发生了,那么说明假设在一定的显著性水平下不可靠或者不成立;如果在一次试验中,小概率事件没有发生,那么也只能说明没有足够理由相信假设是错误的,但是也并不能说明假设是正确的,因为无法收集到所有的证据来证明假设是正确的。
假设检验的结论是在一定的显著性水平下得出的。因此,当采用此方法观测事件并下结论时,有可能会犯错,这些错误主要有两大类:
第Ⅰ类错误:当原假设为真时,却否定它而犯的错误,即拒绝正确假设的错误,也叫弃真错误。犯第Ⅰ类错误的概率记为,通常也叫错误,=1-置信度。
第Ⅱ类错误:当原假设为假时,却肯定它而犯的错误,即接受错误假设的错误,也叫纳伪错误。犯第Ⅱ类错误的概率记为,通常也叫错误。
上述这两类错误在其他条件不变的情况下是相反的,即Ⅰ增大时,Ⅱ就减小;Ⅰ减小时,Ⅱ就增大。错误容易受数据分析人员的控制,因此在假设检验中,通常会先控制第Ⅰ类错误发生的概率,具体表现为:在做假设检验之前先指定一个的具体数值,通常取0.05,也可以取0.1或0.001。
时间: 2024-11-10 01:27:58