1540 银河英雄传说
2002年NOI全国竞赛
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 大师 Master
查看运行结果
题目描述 Description
公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展。
宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争。泰山压顶集团派宇宙舰队司令莱因哈特率领十万余艘战舰出征,气吞山河集团点名将杨威利组织麾下三万艘战舰迎敌。
杨威利擅长排兵布阵,巧妙运用各种战术屡次以少胜多,难免恣生骄气。在这次决战中,他将巴米利恩星域战场划分成30000列,每列依次编号为1, 2, …, 30000。之后,他把自己的战舰也依次编号为1, 2, …, 30000,让第i号战舰处于第i列(i = 1, 2, …, 30000),形成“一字长蛇阵”,诱敌深入。这是初始阵形。当进犯之敌到达时,杨威利会多次发布合并指令,将大部分战舰集中在某几列上,实施密集攻击。合并指令为M i j,含义为让第i号战舰所在的整个战舰队列,作为一个整体(头在前尾在后)接至第j号战舰所在的战舰队列的尾部。显然战舰队列是由处于同一列的一个或多个战舰组成的。合并指令的执行结果会使队列增大。
然而,老谋深算的莱因哈特早已在战略上取得了主动。在交战中,他可以通过庞大的情报网络随时监听杨威利的舰队调动指令。
在杨威利发布指令调动舰队的同时,莱因哈特为了及时了解当前杨威利的战舰分布情况,也会发出一些询问指令:C i j。该指令意思是,询问电脑,杨威利的第i号战舰与第j号战舰当前是否在同一列中,如果在同一列中,那么它们之间布置有多少战舰。
作为一个资深的高级程序设计员,你被要求编写程序分析杨威利的指令,以及回答莱因哈特的询问。
最终的决战已经展开,银河的历史又翻过了一页……
输入描述 Input Description
输入文件galaxy.in的第一行有一个整数T(1<=T<=500,000),表示总共有T条指令。
以下有T行,每行有一条指令。指令有两种格式:
1. M i j :i和j是两个整数(1<=i , j<=30000),表示指令涉及的战舰编号。该指令是莱因哈特窃听到的杨威利发布的舰队调动指令,并且保证第i号战舰与第j号战舰不在同一列。
2. C i j :i和j是两个整数(1<=i , j<=30000),表示指令涉及的战舰编号。该指令是莱因哈特发布的询问指令。
输出描述 Output Description
输出文件为galaxy.out。你的程序应当依次对输入的每一条指令进行分析和处理:
如果是杨威利发布的舰队调动指令,则表示舰队排列发生了变化,你的程序要注意到这一点,但是不要输出任何信息;
如果是莱因哈特发布的询问指令,你的程序要输出一行,仅包含一个整数,表示在同一列上,第i号战舰与第j号战舰之间布置的战舰数目。如果第i号战舰与第j号战舰当前不在同一列上,则输出-1。
样例输入 Sample Input
4
M 2 3
C 1 2
M 2 4
C 4 2
样例输出 Sample Output
-1
1
数据范围及提示 Data Size & Hint
第一列 |
第二列 |
第三列 |
第四列 |
…… |
|
初始时 |
1 |
2 |
3 |
4 |
…… |
M 2 3 |
1 |
3 2 |
4 |
…… |
|
C 1 2 |
1号战舰与2号战舰不在同一列,因此输出-1 |
||||
M 2 4 |
1 |
4 3 2 |
…… |
||
C 4 2 |
4号战舰与2号战舰之间仅布置了一艘战舰,编号为3,输出1 |
分类标签 Tags 点此展开
题解见:http://www.cnblogs.com/shenben/p/5757004.html
几乎是一模一样的题目
AC代码:
#include<cstdio> #include<cstdlib> #include<iostream> using namespace std; #define N 30010 int fa[N],cnt[N],top[N]; inline int read(){ register int x=0,f=1; register char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } inline char in(){ for(register char ch=getchar();;ch=getchar()) if(ch>=‘A‘&&ch<=‘Z‘) return ch; } int find(int x){ if(fa[x]==x) return x; int t=fa[x]; fa[x]=find(fa[x]); fa[x]=fa[t]; top[x]=top[t]; cnt[x]=cnt[t]+cnt[x]; return fa[x]; } int main(){ int n,x,y,a,b;char ch; n=read(); for(int i=1;i<=30000;i++) fa[i]=top[i]=i; for(int i=1;i<=n;i++){ ch=in(); if(ch==‘M‘){ a=read();b=read(); x=find(a);y=find(b); fa[x]=y;find(top[y]); cnt[x]=cnt[top[y]]+1; top[y]=top[x]; } else{ a=read();b=read(); x=find(a);y=find(b); if(x!=y) puts("-1"); else printf("%d\n",abs(cnt[a]-cnt[b])-1); } } return 0; }