java 时间复杂度和空间复杂度

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。

算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。

1、时间复杂度

1.1 时间频度

一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)

1.2 时间复杂度

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如 T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

2、空间复杂度

一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。

一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表不开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(10g2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

对于一个算法,其时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;反之,当=i自求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。另外,算法的所有性能之间都存在着或多或少的相互影响。因此,当设计一个算法(特别是大型算法)时,要综合考虑算法的各项性能,算法的使用频率,算法处理的数据量的大小,算法描述语言的特性,算法运行的机器系统环境等各方面因素,才能够设计出比较好的算法。

时间: 2024-08-01 00:48:59

java 时间复杂度和空间复杂度的相关文章

时间复杂度和空间复杂度

参考博文:http://blog.csdn.net/xiaoxiaopengbo/article/details/51583386 1.时间频度:一个算法执行所消耗的时间.理论上要进行上机测试,但是实际上只需要知道那个算法消耗时间少,那个算法消耗时间多.算法花费时间和执行次数正比(???万一某条语句很耗时间,而另一条语句不耗时间呢?),那个算语句执行次数多,花费时间就越多. 一个算法中语句执行次数称为语句频度或时间频度,记为记为T(n).(用次数反映时间??) 2.时间复杂度:在刚才提到的时间频

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结 通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.       算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量

转 算法的时间复杂度和空间复杂度-总结

http://blog.csdn.net/zolalad/article/details/11848739 通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.      

Python语言算法的时间复杂度和空间复杂度

算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度). 简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间 计算时间复杂度的方法: 用常数1代替运行时间中的所有加法常数 修改后的运行次数函数中,只保留最高阶项 去除最高阶项的系数 按数量级递增排列,

精简版时间复杂度与空间复杂度(五分钟掌握)

前言 一个算法的优劣好坏,会决定一个程序运行的时间.空间.也许当小数据量的时候,这种影响并不明显,但是当有巨量数据的时候,算法的好坏带来的性能差异就会出天差地别.可以说直接影响了一个产品的高度和广度.每个程序员都想用最优的算法解决问题,我们期待自己写出的代码是简洁.高效的.但是如何评判一个算法的好坏呢?时间复杂度和空间复杂度就是一个很好的标准. 1. 时间复杂度 1.1 概念 执行算法所需要的计算工作量 1.2 基本执行次数T(n) 根据计算,得出的该算法在输入数据量为n时的,实际执行次数 1.

算法的时间复杂度和空间复杂度

<算法的时间复杂度和空间复杂度合称为算法的复杂度> --->算法的时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模

算法时间复杂度和空间复杂度详解

算法的时间复杂度和空间复杂度合称为算法的复杂度. 1.时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n). (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时

数据结构和算法之时间复杂度和空间复杂度

前言 上一篇<数据结构和算法>中我介绍了数据结构的基本概念,也介绍了数据结构一般可以分为逻辑结构和物理结构.逻辑结构分为集合结构.线性结构.树形结构和图形结构.物理结构分为顺序存储结构和链式存储结构.并且也介绍了这些结构的特点.然后,又介绍了算法的概念和算法的5个基本特性,分别是输入.输出.有穷性.确定性和可行性.最后说阐述了一个好的算法需要遵守正确性.可读性.健壮性.时间效率高和存储量低.其实,实现效率和存储量就是时间复杂度和空间复杂度.本篇我们就围绕这两个"复杂度"展开

算法时间复杂度和空间复杂度

一.时间复杂度 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,今儿分析T(n)随n的变化情况并确定T(n)的数量.算法的时间复杂度,也就是算法的时间量度,T(n)=O(f(n)), 它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称时间复杂度.其中f(n)是问题规模n的某个函数. O(1) 常数阶 O(n) 线性阶 O(n2)  平方阶 1.推导大O阶方法 用常数1取代运行时间总的所有加法常数 在修改后的运行次数函数中,只保留