wiki
https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF
在信号检测理论中,接收者操作特征曲线(receiver operating characteristic curve,或者叫ROC曲线)是一种座标图式的分析工具,用于 (1) 选择最佳的信号侦测模型、舍弃次佳的模型。 (2) 在同一模型中设定最佳阈值。
在做决策时,ROC分析能不受成本/效益的影响,给出客观中立的建议。
ROC曲线首先是由二战中的电子工程师和雷达工程师发明的,用来侦测战场上的敌军载具(飞机、船舰),也就是信号检测理论。之后很快就被引入了心理学来进行信号的知觉检测。数十年来,ROC分析被用于医学、无线电、生物学、犯罪心理学领域中,而且最近在机器学习(machine learning)和数据挖掘(data mining)领域也得到了很好的发展。
分类模型(又称分类器,或诊断)是将一个实例映射到一个特定类的过程。ROC分析的是二元分类模型,也就是输出结果只有两种类别的模型,例如:(阳性/阴性)(有病/没病)(垃圾邮件/非垃圾邮件)(敌军/非敌军)。
当讯号侦测(或变数测量)的结果是一个连续值时,类与类的边界必须用一个阈值(英语:threshold)来界定。举例来说,用血压值来检测一个人是否有高血压,测出的血压值是连续的实数(从0~200都有可能),以收缩压140/舒张压90为阈值,阈值以上便诊断为有高血压,阈值未满者诊断为无高血压。二元分类模型的个案预测有四种结局:
- 真阳性(TP):诊断为有,实际上也有高血压。
- 伪阳性(FP):诊断为有,实际却没有高血压。
- 真阴性(TN):诊断为没有,实际上也没有高血压。
- 伪阴性(FN):诊断为没有,实际却有高血压。
这四种结局可以画成2 × 2的Confusion matrix:
真实值 | 总 数 |
|||
---|---|---|---|---|
p | n | |||
预 测 输 出 |
p‘ | 真阳性 (TP) |
伪阳性 (FP) |
P‘ |
n‘ | 伪阴性 (FN) |
真阴性 (TN) |
N‘ | |
总数 | P | N |
|
Source: Fawcett (2006). |
ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。
- TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。
- FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。
给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 座标点。
从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。
曲线下面积(AUC)
AUC值越大的分类器,正确率越高。