OpenCV人脸检测demo--facedetect

&1 问题来源

  在运行官网的facedetect这个demo的时候,总是不会出来result的图形,电脑右下角提示的错误是“显示器驱动程序已停止响应,而且已恢复 windows 8(R)”。

&2 前期处理

  • 修改代码,各种代码上的调试都尝试过,demo运行失败了;
  • 百度上的禁用视觉效果方案,即修改电脑的主题为“windows 经典”主题,demo运行失败了;
  • 百度上的重新安装显卡驱动方案,即重新装集成网卡驱动,导致显示器黑屏,倒腾了一天才整回来,失败;

&3 成功解决

  首先,打开注册表,找到HKEY_LOCAL_MACHINE,在SYSTEM中的CurrentControlSet中的Control的GrphicsDrivers上面点击右键,新建QEORD(64位)值(Q),数值名称为:TdrDelay,数值数据为:8,基数不用改变,选择十六进制即可。

  

  然后,在你的项目编译文件夹内加入四个文件,haarcascade_eye_tree_eyeglasses.xml和haarcascade_frontalface_alt.xml、opencv_ffmpeg310_64.dll及opencv_world310d.dll;

  

  在opencv的环境配置中,(前面有博文介绍),去掉可执行文件目录,去掉附加依赖项的opencv_world310.lib,至此,所有的环境配置方面已经完成。

&4 demo的代码和运行结果

注意:在opencv安装文件夹sources\samples\cpp中的文件facedetect.cpp即是源代码。

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

static void help()

{
  cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
  "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
  "It‘s most known use is for faces.\n"
  "Usage:\n"
  "./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
  " [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
  " [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
  " [--try-flip]\n"
  " [filename|camera_index]\n\n"
  "see facedetect.cmd for one call:\n"
  "./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
  "During execution:\n\tHit any key to quit.\n"
  "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}

void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip);

string cascadeName;
string nestedCascadeName;

int main(int argc, const char** argv)
{
  VideoCapture capture;
  Mat frame, image;
  string inputName;
  bool tryflip;
  CascadeClassifier cascade, nestedCascade;
  double scale;

  cv::CommandLineParser parser(argc, argv,
    "{help h||}"
    "{cascade|haarcascade_frontalface_alt.xml|}"
    "{nested-cascade|haarcascade_eye_tree_eyeglasses.xml|}"
    "{scale|1|}{try-flip||}{@filename|lena.jpg|}"
  );

  if (parser.has("help"))
  {
    help();
    return 0;
  }

  cascadeName = parser.get<string>("cascade");
  nestedCascadeName = parser.get<string>("nested-cascade");
  scale = parser.get<double>("scale");
  if (scale < 1)
    scale = 1;
  tryflip = parser.has("try-flip");
  inputName = parser.get<string>("@filename");
  if (!parser.check())
  {
    parser.printErrors();
    return 0;
  }
  if (!nestedCascade.load(nestedCascadeName))
    cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
  if (!cascade.load(cascadeName))
  {
    cerr << "ERROR: Could not load classifier cascade" << endl;
    help();
    return -1;
  }
  if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))
  {
    int c = inputName.empty() ? 0 : inputName[0] - ‘0‘;
    if (!capture.open(c))
    cout << "Capture from camera #" << c << " didn‘t work" << endl;
  }
  else if (inputName.size())
  {
    image = imread(inputName, 1);
    if (image.empty())
    {
      if (!capture.open(inputName))
      cout << "Could not read " << inputName << endl;
    }
  }
  else
  {
    image = imread("../data/lena.jpg", 1);
    if (image.empty()) cout << "Couldn‘t read ../data/lena.jpg" << endl;
  }

  if (capture.isOpened())
  {
    cout << "Video capturing has been started ..." << endl;

    for (;;)
    {
      capture >> frame;
      if (frame.empty())
      break;

      Mat frame1 = frame.clone();
      detectAndDraw(frame1, cascade, nestedCascade, scale, tryflip);

      int c = waitKey(10);
      if (c == 27 || c == ‘q‘ || c == ‘Q‘)
      break;
    }
  }
  else
  {
    cout << "Detecting face(s) in " << inputName << endl;
    if (!image.empty())
    {
      detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
      waitKey(0);
    }
  else if (!inputName.empty())
  {
    /* assume it is a text file containing the
    list of the image filenames to be processed - one per line */
    FILE* f = fopen(inputName.c_str(), "rt");
    if (f)
    {
      char buf[1000 + 1];
      while (fgets(buf, 1000, f))
      {
        int len = (int)strlen(buf), c;
        while (len > 0 && isspace(buf[len - 1]))
        len--;
        buf[len] = ‘\0‘;
        cout << "file " << buf << endl;
        image = imread(buf, 1);
        if (!image.empty())
        {
          detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
          c = waitKey(0);
          if (c == 27 || c == ‘q‘ || c == ‘Q‘)
            break;
        }
        else
        {
          cerr << "Aw snap, couldn‘t read image " << buf << endl;
        }
      }
    fclose(f);
    }
  }
}

return 0;
}

void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip)
{
double t = 0;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(255, 0, 0),
Scalar(255, 128, 0),
Scalar(255, 255, 0),
Scalar(0, 255, 0),
Scalar(0, 128, 255),
Scalar(0, 255, 255),
Scalar(0, 0, 255),
Scalar(255, 0, 255)
};
Mat gray, smallImg;

cvtColor(img, gray, COLOR_BGR2GRAY);
double fx = 1 / scale;
resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR);
equalizeHist(smallImg, smallImg);

t = (double)cvGetTickCount();
cascade.detectMultiScale(smallImg, faces,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(30, 30));
if (tryflip)
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale(smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(30, 30));
for (vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++)
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf("detection time = %g ms\n", t / ((double)cvGetTickFrequency()*1000.));
for (size_t i = 0; i < faces.size(); i++)
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i % 8];
int radius;

double aspect_ratio = (double)r.width / r.height;
if (0.75 < aspect_ratio && aspect_ratio < 1.3)
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle(img, center, radius, color, 3, 8, 0);
}
else
rectangle(img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width - 1)*scale), cvRound((r.y + r.height - 1)*scale)),
color, 3, 8, 0);
if (nestedCascade.empty())
continue;
smallImgROI = smallImg(r);
nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
| CASCADE_SCALE_IMAGE,
Size(30, 30));
for (size_t j = 0; j < nestedObjects.size(); j++)
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle(img, center, radius, color, 3, 8, 0);
}
}
imshow("result", img);
}

结果:

时间: 2024-10-26 14:57:02

OpenCV人脸检测demo--facedetect的相关文章

OpenCV人脸检测(C++代码)

OpenCV人脸检测(C++代码)-- By wepon 这篇文章简单总结一下人脸检测的代码实现,基于OpenCV,C++版本.之所以强调C++版本是因为OpenCV有很多其他语言的接口,之前我也写过人脸检测的Python实现<Python-OpenCV人脸检测(代码)>,这篇文章则讲C++实现,其实大同小异,C++相比于Python实现代码写起来会繁琐一点,这也是语言本身决定的吧. 为了保持代码风格一致,C++实现与之前的Python实现一样,都将人脸检测.眼睛检测.框出人脸.框出眼睛.截取

OpenCV人脸检测

由于光照.遮挡和倾斜等原因,部分人脸和眼睛并不能正确检测.. // 简单的人脸检测 #include <iostream> #include <vector> #include <opencv2\opencv.hpp> #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/im

OpenCV人脸检测(完整源码+思路)

本博文IDE为vs2013 OpenCV2.49 话不多说,先看视频演示(20S演示): 如下: https://v.youku.com/v_show/id_XMjYzMzkxMTYyMA==.html?spm=a2h0w.8278793.2736843.4#paction 程序截图如下: 如何来用OpenCV来实现能. 下面给出OpenCV实现人脸检测的一般步骤: 1.加载人脸检测器 2.开启摄像头 3.对图片进行灰度处理(其实可以不处理,上图中原图的标题栏就是未进行灰度处理进行的检测,这里的

opencv人脸检测,旋转处理

年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier()通过训练数据训练分类器 3. detectMultiScale()检测人脸 训练数据集下最基本的人脸haarcascade_frontalface_default.xml 2. 开始检测 1) 斜脸检测失败 用了一张逃避可耻但有用剧照,不知是gakki脸斜还是不清晰的缘故,face_cascade

Opencv人脸检测Mode的训练

下面的网址是讲具体如何训练; http://www.cnblogs.com/tornadomeet/archive/2012/03/28/2420936.html 当时我想研究车牌识别的,用此方法对车牌进行训练没有成功,呵呵. Opecv提供的几个人脸检测的Model,个人感觉能达到96左右(正脸),但是 我发现有个程序的人脸检测比较牛叉. https://github.com/kylemcdonald/FaceTracker这是个人脸关键点提取的开源代码,但是里面有关人脸框检测的代码可以提取出

OpenCV——人脸检测

OpenCV支持的目标检测的方法: 利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification) 1.加载级联分类器 CascadeClassifier cascade; cascade.load("haarcascade_frontalface_alt2.xml"); 2.打开视频 VideoCapture capture(0); if (!capture.isOpened()){ return -1; } 3.对每一帧图像进

android opencv 人脸检测

转载自http://blog.csdn.net/jesse__zhong/article/details/24889709 .......省略包 public class Staticdetection2Activity extends Activity { final private static String TAG = "StaticrecognitionActivity"; final private int PICTURE_CHOOSE = 1; private ImageV

OpenCV&amp;Qt学习之四——OpenCV 实现人脸检测与相关知识整理

开发配置 OpenCV的例程中已经带有了人脸检测的例程,位置在:OpenCV\samples\facedetect.cpp文件,OpenCV的安装与这个例子的测试可以参考我之前的博文Linux 下编译安装OpenCV. 网上能够找到关于OpenCV人脸检测的例子也比较多,大多也都是基于这个例程来更改,只是多数使用的是OpenCV 1.0的版本,而OpenCV2.0以后由于模块结构的更改,很多人并没有将例程运行起来.如果是新版的OpenCV跑旧的例程,编译运行出错的话,需要确保: #include

如何使用opencv自带工具训练人脸检测分类器

前言 参考 1.opencv人脸检测训练分类器及其常见问题-译文-Good: 2.FAQ-opencv-haartraining-原文: 3.人脸检测训练心得: 4.opencv_traincascade支持Haar和LBP特征: 5.如何使用opencv自带工具训练分类器: 6.如何使用工具进行训练: 7.如何训练详解: 8.opencv中文论坛-级联分类器训练: 完 原文地址:https://www.cnblogs.com/happyamyhope/p/9706844.html