【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

http://www.lydsy.com/JudgeOnline/problem.php?id=1101

无限膜拜数论和分块orz

首先莫比乌斯函数的一些性质可以看《初等数论》或《具体数学》或贾志鹏的《线性筛法和积性函数》

我写一些笔记啥的吧。。

首先莫比乌斯函数的定义及一些性质(免去证明):

$$
\mu (n) =
\begin{cases}
1 & n=1\\
(-1)^k & n=p_1p_2 \cdots p_k,质因子指数均为1且互不相同 \\
0 & 其余情况\\
\end{cases}
$$

按照定义线性筛的话很容易预处理出来,我就不阐述了。

然后是性质:

$$ \sum_{d|n} \mu (d) = [n=1]$$

反演的话暂时还没学orz

然后本题要求

$$\sum_{1<=x<=a} \sum_{1<=y<=b} [(x, y)=d]$$

那么我们化简,首先根据$(a, b)=x \Rightarrow (da, db)=dx$,那么本题就是要求

$$\sum_{1<=x<=a‘} \sum_{1<=y<=b‘} [(x, y)=1],其中a‘=a/d, b‘=b/d$$

继续化简,根据$\sum_{d|n} \mu (d) = [n=1]$

$$\sum_{1<=x<=a‘} \sum_{1<=y<=b‘} \sum_{d|(x, y)} \mu (d)$$

将和式提前且根据$a|(x, y) \Rightarrow a|x, a|y$,有

$$\sum_{1<=d<=min\{a‘, b‘\}} \mu (d) \sum_{1<=x<=a‘且d|x} \sum_{1<=y<=b‘且d|y} 1$$

可以看出原式为:

$$\sum_{1<=d<=min\{a‘, b‘\}} \mu (d) \lfloor \frac{a‘}{d} \rfloor \times \lfloor \frac{b‘}{d} \rfloor$$

而我们发现,$\lfloor \frac{a‘}{d} \rfloor$只有$2\sqrt{a‘}$种(即有那么多个商),b‘同理,因此我们可以分块!

每一次计算同一个商的所有数。而因为是和式,我们可以维护个前缀和变成乘法!

而计算出当前商的下一个商很巧妙!

pos=n/(n/now),是当前除数,pos是当前商的最后一个除数,pos+1则是下一个除数(使得不同于现在的商)!

因为n/now得出当前商后,再除n,可以得到所有商为n/now的数的最后一个数,,,,,,很简单的小学题QAQorz

于是问题解决了

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)

const int N=50015;
int mu[N], p[N], np[N], cnt, sum[N];
void init() {
	mu[1]=1;
	for(int i=2; i<N; ++i) {
		if(!np[i]) p[++cnt]=i, mu[i]=-1;
		for(int j=1; j<=cnt && i*p[j]<N; ++j) {
			int t=i*p[j];
			np[t]=1;
			if(i%p[j]==0) { mu[t]=0; break; }
			mu[t]=-mu[i];
		}
	}
	for(int i=1; i<N; ++i) sum[i]=sum[i-1]+mu[i];
}

int main() {
	int a, b, d, n=getint();
	init();
	while(n--) {
		read(a); read(b); read(d);
		a/=d, b/=d;
		int l=min(a, b), pos;
		ll ans=0;
		for(int i=1; i<=l; i=pos+1) {
			pos=min(a/(a/i), b/(b/i));
			ans+=(ll)(sum[pos]-sum[i-1])*(a/i)*(b/i);
		}
		printf("%lld\n", ans);
	}
	return 0;
}

  


Description

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2

HINT

对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。

Source

时间: 2024-10-09 16:26:50

【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)的相关文章

bzoj 1101 [POI2007]Zap - 莫比乌斯反演

Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d.(1<=d<=a,b<=50000) Output 对于每组询问,输出到输出文件zap.out一个正

BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n][1,m]里gcd=k 等价于[1,n/k][1,m/k]里gcd=1 考虑求[1,n][1,m]里gcd=1 结果为sum(miu[d]*(n/d)*(m/d)) 预处理O(n^1.5) 由于n/d只有sqrt(n)种取值,所以可以预处理出miu[]的前缀和 询问时分段求和 [代码] #incl

bzoj 1101: [POI2007]Zap

裸的莫比乌斯反演 1 #include<bits/stdc++.h> 2 #define N 100005 3 #define M 10000005 4 #define LL long long 5 #define inf 0x3f3f3f3f 6 using namespace std; 7 inline int ra() 8 { 9 int x=0,f=1; char ch=getchar(); 10 while (ch<'0' || ch>'9') {if (ch=='-')

BZOJ1101: [POI2007]Zap(莫比乌斯反演)

1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1

BZOJ 1101([POI2007]Zap-满足x&lt;=a&amp;&amp;y&lt;=b&amp;&amp;gcd(x,y)=d的数对个数)

1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1646  Solved: 577 [Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(

bzoj 1101 zap 莫比乌斯

1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d.(

【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)

http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯一不同的地方是这题有下界.. 下界除以k的时候取上界,然后分块的时候因为有4个数,所以要分成4块来搞.. 然后就行了.. #include <cstdio> #include <cstring> #include <cmath> #include <string>

bzoj 2301 Problem b - 莫比乌斯反演

Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 22 5 1 5 11 5 1 5 2 Sample Output 143 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50000

bzoj 1101 Zap —— 莫比乌斯反演

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int const xn=5e5+5; int pri[xn],cnt,mu[xn]; bool vis[xn]; int rd()