强连通分量-----Kosaraju

芝士

有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。

如图中1,2,3,4是一个强连通分量。

Kosaraju算法:

如果这是一个无向图,那么从一个节点出发,深搜得到的所有节点都是连通的。

但这是一个有向图,起始节点的不同会导致结果的不同,举个栗子,从5搜可以搜到6,但是从6搜不能搜到5。

这说明需要按照一个特定的顺序深搜。假设1,2,3,4是强连通分量a,5,6分别是强连通分量b,c。a可以搜到b,c,但b,c不能搜到a,由于我们不希望搜到不属于同一个强连通分量的点,所以会先搜b,c,再搜a。

那么这个顺序就是被指向的强连通分量要在指向的强连通分量之前被搜到,即被指向的强连通分量中的至少一个点在指向的强连通分量的任意一个点之前被搜到。

为了得到这个顺序,聪明的Kosaraju想到了一个方法:新建原图G的逆图GT(其定义为GT=(V,ET),ET={(u,v):(v,u)∈E}}),按照节点编号顺序在GT上深搜,每搜到一个节点,先把这个节点所能到达的所有未被访问过的节点加入栈中,再把自己加入栈中,然后按照从栈顶到栈底的顺序深搜,这样保证了在原图G中能到达我的点,都在我之后被搜到;

最后原图中强连通分量的个数就等于深搜的次数,每一次深搜到达的未被访问过的节点属于一个强连通分量(可以用一个数组记录一下);

模板:

/*
约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别 上鲜花,她们要表演圆舞.
只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.
为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.
对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的圆舞是不成功的.
如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.
给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?
输入n,m,接下来m行
*/
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define nn 10010
#define mm 100010
using namespace std;
int e=0,l=0,ee=0,cir;
int nx[mm],fi[nn],too[mm];
int fir[nn],nxt[mm],to[mm],li[nn];
bool vis[nn];
void add(int u,int v)
{
    nxt[++e]=fir[u];fir[u]=e;to[e]=v;
}
void add2(int u,int v)
{
    nx[++ee]=fi[u];fi[u]=e;too[e]=v;
}
void dfs(int s)
{
    vis[s]=1;
    for(int i=fi[s];i;i=nx[i])
    {
        if(!vis[too[i]])
          dfs(too[i]);
    }
    li[++l]=s;
}
void dfs2(int s)
{
    vis[s]=1;cir++;
    for(int i=fir[s];i;i=nxt[i])
    {
        if(!vis[to[i]])
          dfs2(to[i]);         //写成了dfs
    }
}
int main()
{
    int n,m,u,v,ma=-1,sum=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&u,&v);
        add(u,v);
        add2(v,u);
    }
    for(int i=1;i<=n;i++)
      if(!vis[i])
        dfs(i);
    fill(vis,vis+n+1,0);
    for(int i=l;i>=1;i--)
      if(!vis[li[i]])                 //写成了vis[i]
      {
          cir=0;
          dfs2(li[i]);
          if(cir>=2) sum++;
      }
    printf("%d",sum);
    return 0;
}

  

  

时间: 2024-12-13 11:01:46

强连通分量-----Kosaraju的相关文章

POJ2186 Popular Cows 【强连通分量Kosaraju】

Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &l

【Algorithms IV】求解强连通分量 Kosaraju算法

[Algorithms IV]求解强连通分量 Kosaraju算法 Kosaraju算法(也被称为Kosaraju–Sharir算法)是一个在线性时间内寻找一个有向图中的强连通分量的算法. 这个拗口的名字来自他的作者,但是查不到他的生平.应该是个印度人. 求解问题:要求有向图中的强连通分量的个数/划分 算法步骤: 即: 对输入G, 反转边获得逆向图GR     用DFS算法对图遍历得到reversePost序列(遍历图后push 到一个stack里,之后stack逆序弹出) 依次对reverse

图论算法之(强连通分量&lt;Kosaraju&gt;)

强连通分量算法有3个之多,现在介绍这种名字叫做kosaraju算法. 这个算法基于两个事实,1.原图G与逆置图GT拥有相同的强连通分量,这肯定是正确的 2.任意一个子节点存放皆后于父节点,也就是说所有只有当所有子节点都入栈了,父节点才入栈 这种在递归调用之后将顶点入队列的方式叫逆后续排序(reverse post),在无环图中这种排序方式就是拓扑排序. 简要证明: 1. 第一次DFS有向图G时,最后记录下的节点必为最后一棵生成树的根节点. 证明:假设最后记录下节点不是树根,则必存在一节点为树根,

强连通分量Kosaraju、Tarjan【模板】

强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通.如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量. 把一个图变为一个强连通图需要添加边数:先求出原图的强连通分量,缩点后变为有向无环图,计算新图入度为0的点的个数SumIn和出度为0的点的个数SumOut,答案就是max(SumIn,SumOut). Kosaraju算法: 1.对原图进行第一遍深度优先遍

图的强连通分量-Kosaraju算法

输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 1 #include<iostream> 2 #include<cstring> 3 #include<vector> 4 using namespace std; 5 const int maxn=1024; 6 struct Edge{ 7 int go,next; 8 }; 9 int vis[maxn],count=0,book[maxn]; 10 vector<Edge> G,

CSU 1612: Destroy Tunnels 强连通分量 Kosaraju算法

链接 :  http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1612 题意: 给一个矩阵A 大小N*N, B = A^1 + A^2 + A^3 + .... A^n , B中是否存在非0项. 题目可以转化为 N个点 编号为1-n, 对于任意点v,经过一些任意的步长到达u (u为所有点集的任意一个).离散数学里有图的矩阵相关知识 A^k代表了矩阵中从i到j的步长为k的方法数. 题目就是求整个图是否强连通. 学习了 Kosaraju算法 可以轻

Kosaraju两次深搜实现强连通分量

Kosaraju两次深搜实现强连通分量 kosaraju算法进行两次dfs,第一次在原图上进行,并在结点递归调用返回时将结点压入一个栈中,第二次dfs在原图的逆图上进行,并且初始点选择栈中最上面的点,每次dfs所访问的点构成一个强连通分量. 第一次看kosaraju算法的时候,我很不解,为什么第二次dfs随便遍历一下就能找到一个强连通分量呢?后来才顿悟,这里关键是选取的遍历起始点的顺序.这里就要好好研究一下为什么第一次遍历能够为第二次遍历打下这么神奇的基础.其实第一次dfs的操作,非常像一个基础

Kosaraju算法解析: 求解图的强连通分量

1. 定义 连通分量:在无向图中,即为连通子图. 上图中,总共有四个连通分量.顶点A.B.C.D构成了一个连通分量,顶点E构成了一个连通分量,顶点F,G和H,I分别构成了两个连通分量. 强连通分量:有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量. 上图中有三个强连通分量,分别是a.b.e以及f.g和c.d.h. 2. 连通分量的求解方法 对于一个无向图的连通分量,从连通分量的任意一个顶点开始,进行一次DFS,一定能遍历这个连通分量的所有顶点.所以

POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &l