【数据结构】邻接表的广度与深度遍历

邻接表:数组和链表相结合的方法。图中顶点一般用一个一维数组存储,也可以用单链表存储,每个顶点的邻接点构成一个线性表,一般为单链表。

无向图:

有向图:

代码:

#include "stdio.h"
#include "stdlib.h"
#include "io.h"
#include "math.h"
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 9 /* 存储空间初始分配量 */
#define MAXEDGE 15
#define MAXVEX 9
#define INFINITY 65535

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */

typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */

/* 邻接矩阵结构 */
typedef struct
{
	VertexType vexs[MAXVEX]; /* 顶点表 */
	EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
	int numVertexes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;

/* 邻接表结构****************** */
typedef struct EdgeNode /* 边表结点 */
{
	int adjvex;    /* 邻接点域,存储该顶点对应的下标 */
	int weight;		/* 用于存储权值,对于非网图可以不需要 */
	struct EdgeNode *next; /* 链域,指向下一个邻接点 */
}EdgeNode;

typedef struct VertexNode /* 顶点表结点 */
{
	int in;	/* 顶点入度 */
	char data; /* 顶点域,存储顶点信息 */
	EdgeNode *firstedge;/* 边表头指针 */
}VertexNode, AdjList[MAXVEX];

typedef struct
{
	AdjList adjList;
	int numVertexes,numEdges; /* 图中当前顶点数和边数 */
}graphAdjList,*GraphAdjList;
/* **************************** */

/* 用到的队列结构与函数********************************** */
/* 循环队列的顺序存储结构 */
typedef struct
{
	int data[MAXSIZE];
	int front;    	/* 头指针 */
	int rear;		/* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;

/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
	Q->front=0;
	Q->rear=0;
	return  OK;
}

/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
	if(Q.front==Q.rear) /* 队列空的标志 */
		return TRUE;
	else
		return FALSE;
}

/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
	if ((Q->rear+1)%MAXSIZE == Q->front)	/* 队列满的判断 */
		return ERROR;
	Q->data[Q->rear]=e;			/* 将元素e赋值给队尾 */
	Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
								/* 若到最后则转到数组头部 */
	return  OK;
}

/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
	if (Q->front == Q->rear)			/* 队列空的判断 */
		return ERROR;
	*e=Q->data[Q->front];				/* 将队头元素赋值给e */
	Q->front=(Q->front+1)%MAXSIZE;	/* front指针向后移一位置, */
									/* 若到最后则转到数组头部 */
	return  OK;
}
/* ****************************************************** */

void CreateMGraph(MGraph *G)
{
	int i, j;

	G->numEdges=15;
	G->numVertexes=9;

	/* 读入顶点信息,建立顶点表 */
	G->vexs[0]='A';
	G->vexs[1]='B';
	G->vexs[2]='C';
	G->vexs[3]='D';
	G->vexs[4]='E';
	G->vexs[5]='F';
	G->vexs[6]='G';
	G->vexs[7]='H';
	G->vexs[8]='I';

	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		for ( j = 0; j < G->numVertexes; j++)
		{
			G->arc[i][j]=0;
		}
	}

	G->arc[0][1]=1;
	G->arc[0][5]=1;

	G->arc[1][2]=1;
	G->arc[1][8]=1;
	G->arc[1][6]=1; 

	G->arc[2][3]=1;
	G->arc[2][8]=1; 

	G->arc[3][4]=1;
	G->arc[3][7]=1;
	G->arc[3][6]=1;
	G->arc[3][8]=1;

	G->arc[4][5]=1;
	G->arc[4][7]=1;

	G->arc[5][6]=1; 

	G->arc[6][7]=1; 

	for(i = 0; i < G->numVertexes; i++)
	{
		for(j = i; j < G->numVertexes; j++)
		{
			G->arc[j][i] =G->arc[i][j];
		}
	}

}

/* 利用邻接矩阵构建邻接表 */
void CreateALGraph(MGraph G,GraphAdjList *GL)
{
	int i,j;
	EdgeNode *e;

	*GL = (GraphAdjList)malloc(sizeof(graphAdjList));

	(*GL)->numVertexes=G.numVertexes;
	(*GL)->numEdges=G.numEdges;
	for(i= 0;i <G.numVertexes;i++) /* 读入顶点信息,建立顶点表 */
	{
		(*GL)->adjList[i].in=0;
		(*GL)->adjList[i].data=G.vexs[i];
		(*GL)->adjList[i].firstedge=NULL; 	/* 将边表置为空表 */
	}

	for(i=0;i<G.numVertexes;i++) /* 建立边表 */
	{
		for(j=0;j<G.numVertexes;j++)
		{
			if (G.arc[i][j]==1)
			{
				e=(EdgeNode *)malloc(sizeof(EdgeNode));
				e->adjvex=j;					/* 邻接序号为j */
				e->next=(*GL)->adjList[i].firstedge;	/* 将当前顶点上的指向的结点指针赋值给e */
				(*GL)->adjList[i].firstedge=e;		/* 将当前顶点的指针指向e */
				(*GL)->adjList[j].in++;

			}
		}
	}

}

Boolean visited[MAXSIZE]; /* 访问标志的数组 */

/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
	EdgeNode *p;
 	visited[i] = TRUE;
 	printf("%c ",GL->adjList[i].data);/* 打印顶点,也可以其它操作 */
	p = GL->adjList[i].firstedge;
	while(p)
	{
 		if(!visited[p->adjvex])
 			DFS(GL, p->adjvex);/* 对为访问的邻接顶点递归调用 */
		p = p->next;
 	}
}

/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
	int i;
 	for(i = 0; i < GL->numVertexes; i++)
 		visited[i] = FALSE; /* 初始所有顶点状态都是未访问过状态 */
	for(i = 0; i < GL->numVertexes; i++)
 		if(!visited[i]) /* 对未访问过的顶点调用DFS,若是连通图,只会执行一次 */
			DFS(GL, i);
}

/* 邻接表的广度遍历算法 */
void BFSTraverse(GraphAdjList GL)
{
	int i;
    EdgeNode *p;
	Queue Q;
	for(i = 0; i < GL->numVertexes; i++)
       	visited[i] = FALSE;
    InitQueue(&Q);
   	for(i = 0; i < GL->numVertexes; i++)
   	{
		if (!visited[i])
		{
			visited[i]=TRUE;
			printf("%c ",GL->adjList[i].data);/* 打印顶点,也可以其它操作 */
			EnQueue(&Q,i);
			while(!QueueEmpty(Q))
			{
				DeQueue(&Q,&i);
				p = GL->adjList[i].firstedge;	/* 找到当前顶点的边表链表头指针 */
				while(p)
				{
					if(!visited[p->adjvex])	/* 若此顶点未被访问 */
 					{
 						visited[p->adjvex]=TRUE;
						printf("%c ",GL->adjList[p->adjvex].data);
						EnQueue(&Q,p->adjvex);	/* 将此顶点入队列 */
					}
					p = p->next;	/* 指针指向下一个邻接点 */
				}
			}
		}
	}
}

int main(void)
{
	MGraph G;
	GraphAdjList GL;
	CreateMGraph(&G);
	CreateALGraph(G,&GL);

	printf("\n深度遍历:");
	DFSTraverse(GL);
	printf("\n广度遍历:");
	BFSTraverse(GL);
	return 0;
}
时间: 2024-10-06 21:48:19

【数据结构】邻接表的广度与深度遍历的相关文章

BST和DST简单的matlab程序(图的广度和深度遍历)

图的广度和深度遍历,具体内容教材有 clc;clear all;close all; %初始化邻接压缩表compressTable=[1 2;1 3;1 4;2 4;2 5;3 6;4 6;4 7];max_vertex = max(compressTable(:)); %压缩表中最大值就是邻接矩阵的宽与高graph_matrix = compressTableToMatrix(compressTable);%从邻接压缩表构造图的矩阵表示[x,y] = cylinder(1,max_vertex

ACM/ICPC 之 数据结构-邻接表+BFS(TshingHua OJ-无线广播Broadcast)

这道题中若能够构成互不干扰的区域,其构成的图其实就是汉密尔顿路(Hamilton road),因此如果能够观察出来可以直接转化为汉密尔顿路的存在性证明,即便不能观察,我相信ACMer也能转化为BFS问题,这道题是一道很好的图论问题,对考察自己图论的基本功很有帮助. 无线广播(Broadcast) 描述 某广播公司要在一个地区架设无线广播发射装置.该地区共有n个小镇,每个小镇都要安装一台发射机并播放各自的节目. 不过,该公司只获得了FM104.2和FM98.6两个波段的授权,而使用同一波段的发射机

ACM/ICPC 之 数据结构-邻接表+DP+队列+拓扑排序(TshingHua OJ-旅行商TSP)

做这道题感觉异常激动,因为在下第一次接触拓扑排序啊= =,而且看了看解释,猛然发现此题可以用DP优化,然后一次A掉所有样例,整个人激动坏了,哇咔咔咔咔咔咔咔~ 咔咔~哎呀,笑岔了- -|| 旅行商(TSP) Description Shrek is a postman working in the mountain, whose routine work is sending mail to n villages. Unfortunately, road between villages is

PTA 邻接表存储图的广度优先遍历(20 分)

6-2 邻接表存储图的广度优先遍历(20 分) 试实现邻接表存储图的广度优先遍历. 函数接口定义: void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) ); 其中LGraph是邻接表存储的图,定义如下: /* 邻接点的定义 */ typedef struct AdjVNode *PtrToAdjVNode; struct AdjVNode{ Vertex AdjV; /* 邻接点下标 */ PtrToAdjVNode Next; /*

6-1 邻接表存储图的广度优先遍历 (20 分)

6-1 邻接表存储图的广度优先遍历 (20 分) 试实现邻接表存储图的广度优先遍历. 函数接口定义: void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) ); 其中LGraph是邻接表存储的图,定义如下: /* 邻接点的定义 */ typedef struct AdjVNode *PtrToAdjVNode; struct AdjVNode{ Vertex AdjV; /* 邻接点下标 */ PtrToAdjVNode Next; /

图的邻接表存储c实现(DFS遍历)

先简要列出实现过程中所需要的数据结构. 如下图 对于这个图而言,它的邻接表可以这样表示,当然表现形式可以多样,这只是我随便画的一种表示方法. 顶点表                                          边表 我们把第一个表即上面标着fixedvex的这个表称作顶点表,后边的称为边表. 上图所示,边表的结构应该这样写: //定义一个边表节点的结构 typedef struct node{ int adjvex; //int Mark; //用于标记是否被访问过 nod

邻接表存储图,DFS遍历图的java代码实现

import java.util.*; public class Main{ static int MAX_VERTEXNUM = 100; static int [] visited = new int[MAX_VERTEXNUM]; public static void main(String [] args){ Graph G = new Graph(); creatGraph(G); output(G); for(int i=0;i<G.vertex_num;i++) visited[i

图的两种存储(邻接矩阵和邻接表)和两种遍历(DFS和BFS)

图的表示有很多,形式不固定,我暂时先记录我已经懂了的,能写的两种即大多数人应该都知道的邻接矩阵和邻接表. 邻接矩阵: 这里的邻接矩阵和离散数学说的有一点不同,至少有向图的邻接矩阵不同(离散书上的有向图的邻接矩阵求法到是有点像求任意两点的最短路径的Floyd算法) 以上都是(我现有知识认为的)废话: 重点 : G : 表示图: Nv:表示图的点数: Ne:表示图的边数: 邻接矩阵 即是一个 Nv * Nv 的矩阵,矩阵是用来储存  权值的(如果是带权图且有边的话),如果是无权图的的话,如果两顶点有

树的广度和深度遍历

1 package alibaba; 2 /** 3 * 深度优先遍历--->栈: 4 广度优先遍历--->队列: 5 */ 6 import java.util.ArrayDeque; 7 8 public class BinaryTree { 9 static class TreeNode{ 10 int value; 11 TreeNode left; 12 TreeNode right; 13 14 public TreeNode(int value){ 15 this.value=v