题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入输出格式
输入格式:
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式:
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入样例#1:
2009
输出样例#1:
3 3 2003
筛素数+枚举
还是我太菜了。。
#include <cstdio> #define N 20005 int num,Prime[N],n; bool notPrime[N]; void init() { notPrime[1]=1; for(int i=2;i<=n;++i) { if(!notPrime[i]) Prime[++num]=i; for(int j=1;j<=num&&i*Prime[j]<=n;++j) { notPrime[i*Prime[j]]=1; if(i%Prime[j]==0) break; } } } int main() { scanf("%d",&n); init(); for(int i=1;i<=num;++i) { for(int j=i;j<=num;++j) { if(!notPrime[n-Prime[i]-Prime[j]]&&n-Prime[i]-Prime[j]>0) { printf("%d %d %d\n",Prime[i],Prime[j],n-Prime[i]-Prime[j]); return 0; } } } return 0; }
时间: 2024-11-05 19:28:13