题160904(14分)若对任意实数$x$都有$\left| 2x-a \right|+\left| 3x-2a \right|\ge {{a}^{2}}$,求$a$的取值范围.
试题来源:2016年中科大自招
参考答案:$\left[-\dfrac 13,\dfrac 13\right]$
解法1:直接分类讨论去绝对值,方法简单,但计算繁琐
当$a=0$时,不等式化为$\left| 2x \right|+\left| 3x \right|\ge 0$,显然成立;
当$a>0$时,有$\dfrac{a}{2}<\dfrac{2a}{3}$,
(i)若$x\le \dfrac{a}{2}$,则不等式化为$\left( a-2x \right)+\left( 2a-3x \right)\ge {{a}^{2}}$恒成立,
即对任意$x\le \dfrac{a}{2}$,${{a}^{2}}-3a\le -5x$恒成立,
$\therefore $${{a}^{2}}-3a\le -\dfrac{5}{2}a$,即${{a}^{2}}-\dfrac{1}{2}a\le 0$,解得$0<a\le \dfrac{1}{2}$;
(ii)若$\dfrac{a}{2}<x\le \dfrac{2a}{3}$,则不等式化为$\left( 2x-a \right)+\left( 2a-3x \right)\ge {{a}^{2}}$恒成立,
即对任意$\dfrac{a}{2}<x\le \dfrac{2a}{3}$,${{a}^{2}}-a\le -x$恒成立,
$\therefore $${{a}^{2}}-a\le -\dfrac{2a}{3}$,即${{a}^{2}}-\dfrac{1}{3}a\le 0$,解得$0<a\le \dfrac{1}{3}$;
(iii)若$x>\dfrac{2a}{3}$,则不等式化为$\left( 2x-a \right)+\left( 3x-2a \right)\ge {{a}^{2}}$恒成立,
即对任意$x>\dfrac{2a}{3}$,${{a}^{2}}+3a\le 5x$恒成立,
$\therefore $${{a}^{2}}+3a\le \dfrac{10a}{3}$,即${{a}^{2}}-\dfrac{1}{3}a\le 0$,解得$0<a\le \dfrac{1}{3}$;
故$a\in (0,\dfrac{1}{3}]$;
同理可得,当$a<0$时,$-a\in (0,\dfrac{1}{3}]$,即$a\in \left[ -\dfrac{1}{3},0 \right]$;
综上,$a$的取值范围是$a\in \left[ -\dfrac{1}{3},\dfrac{1}{3} \right]$.
解法2:利用不等式性质
由$\left| 2x-a \right|+\left| 3x-2a \right|$$=2\left( \left| x-\dfrac{a}{2} \right|+\left| x-\dfrac{2}{3}a \right| \right)+\left| x-\dfrac{2}{3}a \right|$
$\ge 2\left| x-\dfrac{a}{2}+\dfrac{2a}{3}-x \right|+\left| x-\dfrac{2}{3}a \right|=2\left| \dfrac{a}{6} \right|+\left| x-\dfrac{2}{3}a \right|\ge \left| \dfrac{a}{3} \right|$,
当且仅当$x=\dfrac{2}{3}a$时取等,
即${{\left( \left| 2x-a \right|+\left| 3x-2a \right| \right)}_{\min }}=\left| \dfrac{a}{3} \right|$,
$\therefore $$\left| \dfrac{a}{3} \right|\ge {{a}^{2}}$,解得$a\in \left[ -\dfrac{1}{3},\dfrac{1}{3} \right]$
综上,$a$的取值范围是$a\in \left[ -\dfrac{1}{3},\dfrac{1}{3} \right]$.
解法3:将题目转化为恒成立问题
取$k\in R$,令$x=ka$,则不等式化为$\left| 2ka-a \right|+\left| 3ka-2a \right|\ge {{\left| a \right|}^{2}}$,
即$\left( \left| 2k-1 \right|+\left| 3k-2 \right| \right)\left| a \right|\ge {{\left| a \right|}^{2}}$,
当$a=0$时,显然成立;
当$a\ne 0$时,原不等式转化为$\left( \left| 2k-1 \right|+\left| 3k-2 \right| \right)\ge \left| a \right|$,对$\forall k\in R$恒成立.
设$g\left( k \right)=$$\left| 2k-1 \right|+\left| 3k-2 \right|=\left\{ \begin{array}{*{35}{l}} 5k-3, & k\ge \dfrac{2}{3}, \\ 1-k, & \dfrac{1}{2}\le k<\dfrac{2}{3}, \\ -5k+3, & k<\dfrac{1}{2} \\\end{array} \right.$
则当$k=\dfrac{2}{3}$时,$g\left( k \right)$有最小值$\dfrac{1}{3}$,所以$0<\left| a \right|\le \dfrac{1}{3}$,
即$a\in \left[ -\dfrac{1}{3},0 \right)\bigcup \left( 0,\dfrac{1}{3} \right]$.
综上,$a$的取值范围是$a\in \left[ -\dfrac{1}{3},\dfrac{1}{3} \right]$.
学数答题160904-不等式