Minimum Inversion Number
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the
seqence, we will obtain another sequence. There are totally n such sequences as the following: a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where
m = n-1) You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
/* 郁闷……线段树总是错都不知道哪儿错了 渣渣备注了半天结果发现抄都抄不对 加油!!! Time:2014-8-26 16:52 */ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define L(rt) (rt<<1) #define R(rt) (rt<<1|1) const int MAX=5000+10; struct Tree{ int L; int R; int cnt; }tree[MAX<<2];//四倍即可 void BuildTree(int rt,int L,int R){ tree[rt].L=L; tree[rt].R=R; tree[rt].cnt=0; if(tree[rt].L==tree[rt].R){ return ; } int mid=((L+R)>>1);//L+R传入的 不是tree[rt].L BuildTree(L(rt),L,mid); BuildTree(R(rt),mid+1,R); } void Modify(int rt,int pos){ if(tree[rt].L==pos&&tree[rt].R==pos){ tree[rt].cnt++;//可以直接等于 1 即用 1标记 return ; } int mid=((tree[rt].L+tree[rt].R)>>1); if(pos<=mid){ Modify(L(rt),pos); }else if(pos>mid){ Modify(R(rt),pos); } tree[rt].cnt=tree[L(rt)].cnt+tree[R(rt)].cnt; } int Query(int rt,int L,int R){ if(tree[rt].L==L&&tree[rt].R==R){ return tree[rt].cnt; } int mid=((tree[rt].L+tree[rt].R)>>1); if(R<=mid){ return Query(L(rt),L,R); }else if(L>mid){ return Query(R(rt),L,R); }else{ return Query(L(rt),L,mid)+Query(R(rt),mid+1,R); } } void solve(){ int N; int a[MAX]; while(scanf("%d",&N)!=EOF){ BuildTree(1,0,N); int sum=0; for(int i=1;i<=N;i++){ scanf("%d",&a[i]); sum+=Query(1,a[i],N);//询问从 a[i]+1到 n 中的值的个数。即比 a[i]大的即可与a[i]构成 //即比 a[i] 大的值的所有逆序对之和 Modify(1,a[i]);//修改的 只需知道位置即可,根节点为1 传入根节点和位置即可 增量 1 } int ans=sum; for(int i=1;i<=N;i++){ sum=sum-a[i]+(N-a[i]-1);//因为输入 0 到 n-1,比 a[i]小的 就有 a[i]个 //一共 n个数,把第一个移到后边则它增加 的逆序对数为总数 n它减少的逆序对数再减掉它本身 // 比如 3 6 9 0 8 5 7 4 2 1 把 3移到后边就应该把 由 3组成的逆序对数减掉 即比 3 小的个数 //移到最后 一位后,由3增加的逆序对数个数 为比他大的数构成,之和加上它本身刚好为 n ans=min(ans,sum); } printf("%d\n",ans); } } int main(){ solve(); return 0; }