opencv中的矩阵操作

有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等 
大多数函数支持ROI,如果图像ROI被设置,那么只处理ROI部分 
少部分函数支持COI,如果COI设置,只处理感兴趣的通道

矩阵逻辑运算 
void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);// 
void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);// 
void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);// 
void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);// 
void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);// 
void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);// 
void cvNot(const CvArr* src,CvArr* dst);//矩阵取反

矩阵算术运算 
绝对值 
void cvAbs(const CvArr* src,CvArr* dst); 
void cvAbsDiff(const CvArr* src1,const CvArr* src2, CvArr* dst);//两矩阵相减取绝对值 
void cvAbsDiffS(const CvArr* src, CvArr* dst,CvScalar value);//矩阵减去一个数取绝对值 
加减 
void cvAdd(const CvArr* src1,const CvArr* src2,CvArr* dst,const CvArr* mask = NULL);//两数组相加,dst(I)=src1(I)+src2(I) if mask(I)!=0 
void cvAddS(const CvArr* src,CvScalar value,CvArr*dst,const CvArr* mask = NULL);//数组和一个数相加,dst(I)=src(I)+value if mask(I)!=0 
void cvAddWeighted(const CvArr* src1,double alpha,const CvArr* src2,double beta,double gamma,CvArradded to each sum* dst);//带权相加相当于dst(x,y) = α ? src1(x,y) + β ? src2(x,y) + γ 
void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL);//矩阵减法,dst(I)=src1(I)-src2(I) if mask(I)!=0 
void cvSubS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//矩阵减数,dst(I)=src(I)-value if mask(I)!=0 
void cvSubRS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL);//数减矩阵,dst(I)=value-src(I) if mask(I)!=0 
乘除 
void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1);//scale*src1(i)/src2(i),如果src1=NULL,则计算scale/src2(i) 
void cvMul(const CvArr* src1,const CvArr* src2,CvArr* dst,double scale=1);//两矩阵元素之间的简单乘法,一般的矩阵点乘用cvGEMM(); 
次方 
void cvPow(const CvArr* src, CvArr* dst, double power);//为每个src的数求power次方 
指数 
void cvExp(const CvArr* src, CvArr* dst);//dst(I)=EXP(src(I)) 
对数 
void cvLog(const CvArr* src, CvArr* dst);//

线性代数计算 
加&乘 
void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst);//src1和scale的乘积加上src2 
void cvCrossProduct(const CvArr* src1,const CvArr* src2,CvArr* dst);//计算两个3D向量(单通道)的叉乘运算 
double cvDotProduct(const CvArr* src1, const CvArr* src2);//两个向量点乘 
void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0);//乘加运算的始祖 
    由通用乘加函数参与定义的两个具体宏 
        cvMatMul(const CvArr* src1,const CvArr* src2,CvArr* dst); 
        cvMatMulAdd(const CvArr* src1,const CvArr* src2,const CvArr* src3,CvArr* dst); 
CvScalar cvTrace(const CvArr* mat);//计算对角线上的元素和 
变换 
void cvTransform(const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL);//dst=transmat · src + shiftvec 
void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat);//把矩阵每个元素中三个通道当做一个矩阵,乘mat,mat是一个3×3或者4×4的转换矩阵 
转置 
void cvTranspose(const CvArr* src, CvArr* dst); 
void cvMulTransposed(const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1.0);//(src-delta)乘以它的转置再乘以scale 
逆矩阵 
double cvInvert(const CvArr* src,CvArr* dst,int method=CV_LU);//求原矩阵的逆矩阵,默认使用高斯消去法 
    方阵可逆的充要条件是|A|!=0 
    method取值为CV_LU高斯消去法(默认)    CV_SVD 奇异值分解SVD    CV_SVD_SYM对称矩阵的SVD 
行列式 
double cvDet(const CvArr* mat);//计算方阵行列式,一定是单通道的 
    小型方阵直接计算,大型方阵用高斯消去法计算 
    如果矩阵正定对称,用奇异值分解的方法解决cvSVD(); 
特征向量特征值 
void cvEigenVV(CvArr* mat, CvArr* evects, CvArr* evals, double eps=0);//计算对称矩阵的特征值和特征向量,evects输出特征向量,evals输出特征值,eps雅可比方法停止参数 
    要求三个矩阵都是浮点类型,10×10以下该方法有效,20×20以上的矩阵不能计算出结果,为节约计算量,eps通常设为DBL_EPSILON(10^-15) 
    如果给定的矩阵是对称正定矩阵,那么考虑使用cvSVD(); 
协方差 
void cvCalcCovarMatrix(const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags);//给定一组大小和类型相同的向量,向量的个数,计算标记,输出协方差正阵和每个向量的平均值矩阵 
    CV_COVAR_NORMAL    普通计算协方差和平均值,输出的是n×n的协方差阵 
    CV_COVAR_SCRAMBLED    快速PCA“Scrambled”协方差,输出的是m×m的协方差阵 
    CV_COVAR_USE_AVERAGE    平均值是输入的 
    CV_COVAR_SCALE    重新缩放输出的协方差矩阵 
        四个flag通过并运算协同发挥作用,前两个不能并 
CvSize cvMahalonobis(const CvArr* vec1,const CvArr* vec2,CvArr* mat); 
int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU);//Solves a linear system or least-squares problem. 
void cvSVD(CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0);//Performs singular value decomposition of a real floating-point matrix. 
void cvSVBkSb(const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags);//Performs singular value back substitution.

数组比较 
void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op);//两矩阵比较运算 
    CV_CMP_EQ - src1(I) 是否相等 
    CV_CMP_GT - src1(I) 是否大于 
    CV_CMP_GE - src1(I) 是否大于等于 
    CV_CMP_LT - src1(I) 是否小于 
    CV_CMP_LE - src1(I) 是否小于等于 
    CV_CMP_NE - src1(I) 是否不等 
        如果判断为假,dst设为0,如果判断为真,dst设为0xff 
void cvCmpS(const CvArr* src, double value, CvArr* dst, int cmp_op);//矩阵和一个数字比较运算

矩阵内转换 
类型转换 
void cvConvertScale(const CvArr* src,CvArr* dst,double scale,double shift);//矩阵首先乘以scale再加上shift,然后把src中的数据类型转换成dst类型,但是src和dst通道数需要相等 
void cvConvertScaleAbs(const CvArr* src,CvArr* dst,double scale,double shift);//在src到dst类型转换前,先做绝对值 
void cvCvtColor(const CvArr* src,CvArr* dst, int code);//图像 颜色空间转换,src要为8U 16U 32F,dst的数据类型需要和src相同,通道数看code 
    code格式如:CV_原色彩空间2目的色彩空间    色彩空间要考虑RGB的顺序 
    支持的颜色空间包括:RGB    RGB565    RGB555    GRAY RGBA    XYZ    YCrCb    HSV    HLS    Luv    BayerRG 
空间转换 
void cvFlip(const CvArr* src, CvArr* dst=NULL, int flip_mode=0);//图像绕x、y轴旋转。当用在一维数组上时并且flip_mode>0,可以用来颠倒数据排列 
    flip_mode=0:左右对称values of the conversion resul 
    flip_mode>0:上下对称 
    flip_mode<0:中心对称

from: http://blog.csdn.net/abcjennifer/article/details/7385917

时间: 2024-07-30 00:14:48

opencv中的矩阵操作的相关文章

OpenCV中的矩阵乘法运算

转载:http://blog.csdn.net/tangwei2014 OpenCV中矩阵乘法运算 1. Mat*Mat: 第一个矩阵的列数必须等于第二个矩阵的行数. [0, 1, 2, 3;     [0, 0, 0;       [14, 14, 14; 0, 1, 2, 3; *  1, 1, 1;  =    14, 14, 14; 0, 1, 2, 3]      2, 2, 2;        14, 14, 14] 3, 3, 3] 2. Mat.mul(Mat): 两个矩阵维数必

opencv中各种矩阵乘的差别

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 OpenCV中每次遇到矩阵乘法就乱,各种翻各种查. 这次总结了一下.为了简单明了,还是让样例说话. 1. Mat*Mat: 第一个矩阵的列数必须等于第二个矩阵的行数. [0, 1, 2, 3;     [0, 0, 0;       [14, 14, 14; 0, 1, 2, 3;  *  1, 1, 1;  =    14, 14, 14; 0, 1, 2, 3]      2, 2, 2;        

opencv中各种矩阵乘的区别

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 OpenCV中每次遇到矩阵乘法就乱,各种翻各种查. 这次总结了一下,为了简单明了,还是让例子说话. 1. Mat*Mat: 第一个矩阵的列数必须等于第二个矩阵的行数. [0, 1, 2, 3;     [0, 0, 0;       [14, 14, 14; 0, 1, 2, 3;  *  1, 1, 1;  =    14, 14, 14; 0, 1, 2, 3]      2, 2, 2;        

opencv中 Mat矩阵申明形式

在调用opencv的时候,可能不像matlab那样直接就可以 新建矩阵.在C++中需要严格的定义矩阵形式: 在opencv中一共有显示创建Mat对象的方法: 一.使用mat()构造函数: 上图中可以发现,首先要先定义其图像尺寸 (2*3,宽为2  高为3 ).即图像的行数和列数:然后制定存储袁术的数据类型以及每个矩阵点的通道数,是浮点型存储还是字符型,是三通道还是单通道:     例如: CV_8UC3   就是代表的8位 的unsigned char 型 ,每个像素是由三个元素组成的三通道:

Opencv 中图片像素操作的应用实例——计算图片某一种颜色区域大小所占比

对图片进行处理,其中图片像素的处理是基本的过程,包括对图片像素的遍历,对每一个像素的RGB三个通道的灰度值的获取等. 以下是基于opencv 的一个应用实例,即计算图片中黄色区域大小占整个图片大小的比例. 1 // computerPercentage.cpp: 定义控制台应用程序的入口点. 2 // 3 4 #include "stdafx.h" 5 #include<iostream> 6 #include<opencv2/opencv.hpp> 7 #in

OpenCV中Rect矩阵类

成员变量x.y.width.height,分别为左上角点的坐标和矩形的宽和高. 常用的成员函数有: Size()返回值为一个Size area()返回矩形的面积 contains(Point)用来判断点是否在矩形内 inside(Rect)函数判断矩形是否在该矩形内 tl()返回左上角点坐标 br()返回右下角点坐标. // 移动矩阵 Rect rectShift = rect + point; // 缩放矩阵 Rect rectScale = rect + size; // 求两矩阵交集和并集

对OpenCV中3种乘法操作的理解掌握

参考了<Opencv中Mat矩阵相乘--点乘.dot.mul运算详解 >"http://blog.csdn.net/dcrmg/article/details/52404580"的相关内容. 乘法是线性代数的基本操作,在OpenCV中有三种方法实现了乘法. 一.向量乘法 这两幅图像说明的就是向量乘法.在OpenCV中采用" . "来实现,要求是第一个矩阵的列值等于第二个矩阵的行值.且每个矩阵都是float结构. Mat A = Mat(3,3,CV_32

OpenCV快速遍历矩阵元素方法

OpenCV中Mat矩阵data数据的存储方式和二维数组不一致,二维数组按照行优先的顺序依次存储,而Mat中还有一个标示行步进的变量Step.使用Mat.ptr<DataTyte>(row) 行指针的方式定位到每一行,可快速遍历矩阵.例程如下: 1 std::cout << "The inverse matrix of K is:" << std::endl; 2 for(int i=0;i<3;i++) 3 { 4 float* data =

OpenCV中图像算术操作与逻辑操作

OpenCV中图像算术操作与逻辑操作 在图像处理中有两类最重要的基础操作分别是图像点操作与块操作,简单点说图像点操作就是图像每个像素点的相关逻辑与几何运算.块操作最常见就是基于卷积算子的各种操作.实现各种不同的功能.今天小编就跟大家一起学习OpenCV中图像点操作相关的函数与应用场景.常见算术运算包括加.减.乘.除,逻辑运算包括与.或.非.异或.准备工作: 选择两张大小一致的图像如下.加载成功以后显示如下: 加法操作结果如下: 减法操作结果如下: 乘法操作结果如下: 除法操作结果如下: 权重加法