二叉树基础——前序遍历、中序遍历、后序遍历、按层遍历

转载请注明原文地址:

一:树的结点

一般默认树的结点由:结点值、左儿子、右儿子,构造函数组成。

class TreeNode{
    int value;
    TreeNode  left;
    TreeNode  right;
    public TreeNode(int i){
    this.value=i;
    }
}

二:二叉树的遍历实现——递归和非递归

1:递归实现==按照遍历方式(前、中、后)对左、根、右的访问顺序去 打印结点值、递归左儿子、递归右儿子

    public void preorder(TreeNode root){
        if(root==null){
            return;
        }
        System.out.println(root.val);    //根
        preorder(root.left,pre);//左
        preorder(root.right,pre);//右
    }

    public void inorder(TreeNode root){
        if(root==null){
            return;
        }
        inorder(root.left,in); /左
        System.out.println(root.val);//根
        inorder(root.right,in);//右
    }

    public void postorder(TreeNode root){
        if(root==null){
            return;
        }
        postorder(root.left,post);//左
        postorder(root.right,post);//右
        System.out.println(root.val);//根
    }

2:非递归实现==使用 栈 来控制结点的处理顺序

时间: 2024-11-05 19:25:12

二叉树基础——前序遍历、中序遍历、后序遍历、按层遍历的相关文章

【基础备忘】 二叉树前序、中序、后序遍历相互求法

转自:http://www.cnblogs.com/fzhe/archive/2013/01/07/2849040.html 今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2

树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

最近学习树的概念,有关二叉树的实现算法记录下来... 不过学习之前要了解的预备知识:树的概念:二叉树的存储结构:二叉树的遍历方法.. 二叉树的存储结构主要了解二叉链表结构,也就是一个数据域,两个指针域,(分别为指向左右孩子的指针),从下面程序1,二叉树的存储结构可以看出. 二叉树的遍历方法:主要有前序遍历,中序遍历,后序遍历,层序遍历.(层序遍历下一篇再讲,本篇主要讲的递归法) 如这样一个二叉树: 它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左子树,再前序遍历右子树) 它

二叉树遍历(前序、中序、后序、层次、深度优先、广度优先遍历)

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有深度遍历和广度遍历,深度遍历有前序.中序以及后序三种遍历方法,广度遍历即我们平常所说的层次遍历.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁,而对于广度遍历来说,需要其他数据结构的支撑,比如堆了.所以,对于一段代码来说,可读性有时候要比代码本身的效率要重要的多. 四种主要的遍历思想为: 前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子

二叉树基本操作:前序、中序、后序遍历(递归方式)

二叉树是最常见最重要的数据结构之一,它的定义如下: 二叉树(binary tree)是有限多个节点的集合,这个结合或者是空集,或者由一个根节点和两颗互不相交的.分别称为左子树和右子树的二叉树组成. 二叉树最基本的操作是遍历:一般约定遍历时左节点优先于右节点,这样根据根节点的遍历顺序可分为三种遍历操作:前序-先遍历根节点,再处理左右节点:中序-先遍历左节点,然后处理根节点,最后处理右节点:后序-先遍历左右节点,然后处理根节点. 从上边二叉树定义可以看出:二叉树使用了递归的概念描述.所以,二叉树的很

二叉树的前序、中序、后序遍历(递归、非递归)实现

本文部分来源于CSDN兰亭风雨大牛的原创.链接为http://blog.csdn.net/ns_code/article/details/12977901 二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的.二叉树有前.中.后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但其开销也比较大,而若采用非递归方法实现三种遍历,则要用栈来模拟实现(递归也是用栈实现的).下面先简要介绍三种遍历方式的递归实现,再详细介绍三种遍

二叉树前序、中序、后序遍历非递归写法的透彻解析

前言 在前两篇文章二叉树和二叉搜索树中已经涉及到了二叉树的三种遍历.递归写法,只要理解思想,几行代码.可是非递归写法却很不容易.这里特地总结下,透彻解析它们的非递归写法.其中,中序遍历的非递归写法最简单,后序遍历最难.我们的讨论基础是这样的: //Binary Tree Node typedef struct node { int data; struct node* lchild; //左孩子 struct node* rchild; //右孩子 }BTNode; 首先,有一点是明确的:非递归

数据结构-二叉树(1)以及前序、中序、后序遍历(python实现)

上篇文章我们介绍了树的概念,今天我们来介绍一种特殊的树--二叉树,二叉树的应用很广,有很多特性.今天我们一一来为大家介绍. 二叉树 顾名思义,二叉树就是只有两个节点的树,两个节点分别为左节点和右节点,特别强调,即使只有一个子节点也要区分它是左节点还是右节点. 常见的二叉树有一般二叉树.完全二叉树.满二叉树.线索二叉树.霍夫曼树.二叉排序树.平衡二叉树.红黑树.B树这么多种类.我们这篇文章中简单介绍一般二叉树.完全二叉树和满二叉树. 一般二叉树 很简单,只要满足子节点数不超过两个的树就是一棵二叉树

二叉树各种相关操作(建立二叉树、前序、中序、后序、求二叉树的深度、查找二叉树节点,层次遍历二叉树等)(C语言版)

将二叉树相关的操作集中在一个实例里,有助于理解有关二叉树的相关操作: 1.定义树的结构体: 1 typedef struct TreeNode{ 2 int data; 3 struct TreeNode *left; 4 struct TreeNode *right; 5 }TreeNode; 2.创建根节点: 1 TreeNode *creatRoot(){ 2 TreeNode * root =(TreeNode *)malloc(sizeof(TreeNode)); 3 if(NULL=

二叉树的前序、中序、后序遍历的递归和非递归算法实现

1 /** 2 * 二叉树的前序.中序.后序遍历的递归和非递归算法实现 3 **/ 4 5 //二叉链表存储 6 struct BTNode 7 { 8 struct BTNode *LChild; // 指向左孩子指针 9 ELEMENTTYPE data; // 结点数据 10 struct BTNode *RChild; // 指向右孩子指针 11 }; 12 13 /** 14 * 前序遍历 15 **/ 16 // 递归实现 17 void PreorderTraversal(BTNo

二叉树前序、中序、后序遍历相互求法

今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2.访问根节点     3.中序遍历右子树 后序遍历:     1.后序遍历左子树     2.后序遍历右子树     3.访问