workqueue --最清晰的讲解

带你入门:

1.INIT_WORK(struct work_struct *work, void (*function)(void *), void *data) 上面一句只是定义了work和work对应的操作。  要是在实际使用的时候还是需要你去在适当的条件下激活这个work。只有激活了这个work,  这个work才有运行的机会。这个激活操作接口是shudule_work或是queue_work。  这两个接口之后只是说这个work有了运行的机会,但是具体到什么时候运行,那要看你用哪个接口激活

的。  如果是shudule_work的话,系统中有个events内核线程,这个线程会处理你用shudule_work接口激活  的所有work。如果是queue_work的话,一般这种情况都是自己创建了一个单独的处理线程,这样将  你激活的work和这个线程联系起来。至于什么时候运行,那就是events或是你定义的特定线程运行的时

候。

2.至于你提到的为什么要用到work。这个的话,我个人的理解是:一般用在对耗时处理上。比如,  当中断发生的时候,你可以在中断上下文中完成激活操作,让那些耗时的操作在work中完成。

系统化讲解:

1. 什么是workqueue Linux中的Workqueue机制就是为了简化内核线程的创建。通过调用workqueue的接口就能创建内核线程。并且可以根据当前系统CPU的个数创建线程的数量,使得线程处理的事务能够并行化。workqueue是内核中实现简单而有效的机制,他显然简化了内核daemon的创建,方便了用户的编程.

工作队列(workqueue)是另外一种将工作推后执行的形式.工作队列可以把工作推后,交由一个内核线程去执行,也就是说,这个下半部分可以在进程上下文中执行。最重要的就是工作队列允许被重新调度甚至是睡眠。

2. 数据结构 我们把推后执行的任务叫做工作(work),描述它的数据结构为work_struct, struct work_struct {     atomic_long_t data;       /*工作处理函数func的参数*/ #define WORK_STRUCT_PENDING 0        /* T if work item pending execution */ #define WORK_STRUCT_STATIC 1        /* static initializer (debugobjects) */ #define WORK_STRUCT_FLAG_MASK (3UL) #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)     struct list_head entry;        /*连接工作的指针*/     work_func_t func;              /*工作处理函数*/ #ifdef CONFIG_LOCKDEP     struct lockdep_map lockdep_map; #endif };

这些工作以队列结构组织成工作队列(workqueue),其数据结构为workqueue_struct, struct workqueue_struct {  struct cpu_workqueue_struct *cpu_wq;  struct list_head list;  const char *name;   /*workqueue name*/  int singlethread;   /*是不是单线程 - 单线程我们首选第一个CPU -0表示采用默认的工作者线程event*/  int freezeable;  /* Freeze threads during suspend */  int rt; };

如果是多线程,Linux根据当前系统CPU的个数创建cpu_workqueue_struct 其结构体就是, truct cpu_workqueue_struct {  spinlock_t lock;/*因为工作者线程需要频繁的处理连接到其上的工作,所以需要枷锁保护*/  struct list_head worklist;  wait_queue_head_t more_work;  struct work_struct *current_work; /*当前的work*/  struct workqueue_struct *wq;   /*所属的workqueue*/  struct task_struct *thread; /*任务的上下文*/ } ____cacheline_aligned; 在在该结构主要维护了一个任务队列,以及内核线程需要睡眠的等待队列,另外还维护了一个任务上下文,即task_struct。 三者之间的关系如下:

3. 创建工作 3.1 创建工作queue a. create_singlethread_workqueue(name) 该函数的实现机制如下图所示,函数返回一个类型为struct workqueue_struct的指针变量,该指针变量所指向的内存地址在函数内部调用kzalloc动态生成。所以driver在不再使用该work queue的情况下调用void destroy_workqueue(struct workqueue_struct *wq)来释放此处的内存地址。

图中的cwq是一per-CPU类型的地址空间。对于create_singlethread_workqueue而言,即使是对于多CPU系统,内核也只负责创建一个worker_thread内核进程。该内核进程被创建之后,会先定义一个图中的wait节点,然后在一循环体中检查cwq中的worklist,如果该队列为空,那么就会把wait节点加入到cwq中的more_work中,然后休眠在该等待队列中。

Driver调用queue_work(struct workqueue_struct *wq, struct work_struct *work)向wq中加入工作节点。work会依次加在cwq->worklist所指向的链表中。queue_work向cwq->worklist中加入一个work节点,同时会调用wake_up来唤醒休眠在cwq->more_work上的worker_thread进程。wake_up会先调用wait节点上的autoremove_wake_function函数,然后将wait节点从cwq->more_work中移走。

worker_thread再次被调度,开始处理cwq->worklist中的所有work节点...当所有work节点处理完毕,worker_thread重新将wait节点加入到cwq->more_work,然后再次休眠在该等待队列中直到Driver调用queue_work...

b. create_workqueue

相对于create_singlethread_workqueue, create_workqueue同样会分配一个wq的工作队列,但是不同之处在于,对于多CPU系统而言,对每一个CPU,都会为之创建一个per-CPU的cwq结构,对应每一个cwq,都会生成一个新的worker_thread进程。但是当用queue_work向cwq上提交work节点时,是哪个CPU调用该函数,那么便向该CPU对应的cwq上的worklist上增加work节点。

c.小结 当用户调用workqueue的初始化接口create_workqueue或者create_singlethread_workqueue对workqueue队列进行初始化时,内核就开始为用户分配一个workqueue对象,并且将其链到一个全局的workqueue队列中。然后Linux根据当前CPU的情况,为workqueue对象分配与CPU个数相同的cpu_workqueue_struct对象,每个cpu_workqueue_struct对象都会存在一条任务队列。紧接着,Linux为每个cpu_workqueue_struct对象分配一个内核thread,即内核daemon去处理每个队列中的任务。至此,用户调用初始化接口将workqueue初始化完毕,返回workqueue的指针。Workqueue初始化完毕之后,将任务运行的上下文环境构建起来了,但是具体还没有可执行的任务,所以,需要定义具体的work_struct对象。然后将work_struct加入到任务队列中,Linux会唤醒daemon去处理任务。

上述描述的workqueue内核实现原理可以描述如下:

3.2  创建工作 要使用工作队列,首先要做的是创建一些需要推后完成的工作。可以通过DECLARE_WORK在编译时静态地建该结构: DECLARE_WORK(name,void (*func) (void *), void *data); 这样就会静态地创建一个名为name,待执行函数为func,参数为data的work_struct结构。 同样,也可以在运行时通过指针创建一个工作: INIT_WORK(structwork_struct *work, woid(*func) (void *), void *data);

4. 调度 a. schedule_work

在大多数情况下, 并不需要自己建立工作队列,而是只定义工作, 将工作结构挂接到内核预定义的事件工作队列中调度, 在kernel/workqueue.c中定义了一个静态全局量的工作队列static struct workqueue_struct *keventd_wq;默认的工作者线程叫做events/n,这里n是处理器的编号,每个处理器对应一个线程。比如,单处理器的系统只有events/0这样一个线程。而双处理器的系统就会多一个events/1线程。 调度工作结构, 将工作结构添加到全局的事件工作队列keventd_wq,调用了queue_work通用模块。对外屏蔽了keventd_wq的接口,用户无需知道此参数,相当于使用了默认参数。keventd_wq由内核自己维护,创建,销毁。这样work马上就会被调度,一旦其所在的处理器上的工作者线程被唤醒,它就会被执行。

b. schedule_delayed_work(&work,delay); 有时候并不希望工作马上就被执行,而是希望它经过一段延迟以后再执行。在这种情况下,同时也可以利用timer来进行延时调度,到期后才由默认的定时器回调函数进行工作注册。延迟delay后,被定时器唤醒,将work添加到工作队列wq中。

工作队列是没有优先级的,基本按照FIFO的方式进行处理。

5. 示例: #include <linux/module.h> #include <linux/init.h> #include <linux/workqueue.h>

static struct workqueue_struct *queue=NULL; static struct work_struct   work;

staticvoid work_handler(struct work_struct *data) {        printk(KERN_ALERT"work handler function.\n"); }

static int __init test_init(void) {       queue=create_singlethread_workqueue("hello world");/*创建一个单线程的工作队列*/       if (!queue)             goto err;

INIT_WORK(&work,work_handler);        schedule_work(&work);

return0; err:       return-1; }

static   void __exit test_exit(void) {        destroy_workqueue(queue); } MODULE_LICENSE("GPL"); module_init(test_init); module_exit(test_exit);

时间: 2024-08-02 09:07:01

workqueue --最清晰的讲解的相关文章

线程池系列二:ThreadPoolExecutor讲解

一.简介 1)线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) 参数讲解:corePoolSize: 线程池维护线

四轴PID讲解

鉴于某些原因,笔者无法修改原先已经发表的部分博客文章,在这里笔者将先前设计的微型四轴工程代码开源,下载地址:github.com/yzhajlydy 正文开始:这篇文章分为三个部分: PID原理普及 常用四轴的两种PID算法讲解(单环PID.串级PID) 如何做到垂直起飞.四轴飞行时为何会飘.如何做到脱控? PID原理普及 1.  对自动控制系统的基本要求: 稳.准.快:         稳定性(P和I降低系统稳定性,D提高系统稳定性):在平衡状态下,系统受到某个干扰后,经过一段时间其被控量可以

Django -- 安装入门

关于Django的学习,我主要依据的两个地址,希望可以和大家分享: http://www.runoob.com/django/django-install.html http://djangobook.py3k.cn/2.0/ ------------------------------------------------------------------------------------------------- [入门简介] web开发激动人心且富于创造性,同时也繁琐令人生厌:pytho

Qt通过HTTP POST上传文件

本文使用Qt Creator用HTTP POST的方法上传文件,并给出一个上传文件的例程. 本文主要客户端,所以对于服务器端程序编写的描述会比较简略 服务器使用Django编写,django服务器接收文件的方法在文章http://www.cnblogs.com/fnng/p/3740274.html中有较为清晰的讲解,我搭建的服务器端程序除了没有网页客户端以及部分变量名称不同以外,基本上与这篇文章的服务器搭建过程一样. 如果服务器端程序发生变化,这篇文章后面给出的客户端例程可能就不再适用.因此如

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

转!奇异值分解及几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 英文原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同

《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果

本文完全转载:http://www.cnblogs.com/Imageshop/p/3281703.html,再次仅当学习交流使用.. <Single Image Haze Removal Using Dark Channel Prior>一文中图像去雾算法的原理.实现.效果(速度可实时) 本文算法合作联系QQ: 33184777, 非诚勿扰 邮件地址:   [email protected] 最新的效果见 :http://video.sina.com.cn/v/b/124538950-125

【前端福利】用grunt搭建自动化的web前端开发环境-完整教程

jQuery在使用grunt,bootstrap在使用grunt,百度UEditor在使用grunt,你没有理由不学.不用! 1. 前言 各位web前端开发人员,如果你现在还不知道grunt或者听说过.但是不会熟练使用grunt,那你就真的真的真的out了(三个"真的"重复,表示重点).至于grunt的作用,这里不详细说了,总之你如果做web前端开发,你一定要用grunt.还有一点,它完全免费,没有盗版.既强大又免费的东西,为何不用? 当然了,你如果你能找到更好的替代grunt的其他工

《TCP/IP网络编程》

<TCP/IP网络编程> 基本信息 作者: (韩)尹圣雨 译者: 金国哲 丛书名: 图灵程序设计丛书 出版社:人民邮电出版社 ISBN:9787115358851 上架时间:2014-6-19 出版日期:2014 年6月 开本:16开 页码:1 版次:1-1 所属分类:计算机 > 计算机网络 > 网络协议 > TCP/IP 更多关于>>><TCP/IP网络编程> 编辑推荐 为初学者准备的网络编程 本书涵盖操作系统.系统编程.TCP/IP协议等多种