感知器

  • 感知器通常用下面的图形表示:

  x1,x2和x3是输入单元。每个输入单元分别代表一个特征。感知器通常用另外一个输入单元代表一个常用误差项,但是这个输入单元在图形中通常被忽略了。中间的圆圈是一个计算单元,类似神经元的细胞核连接输入单元和计算单元的边类似于树突。每条边是一个权重,或者是一个参数。参数容易解释,如果某个解释变量与阳性类型(positive class)相关,其权重为正,某个解释变量与阴性类 型(negative class)相关,其权重为负。连接计算单元和输出单元的边类似轴突。

  • 激励函数

  感知器通过使用激励函数(activation function )处理解释变量和模型参数的线性组合对样本分类, 计算公式如下所示。解释变量和模型参数的线性组合有时也称为感知器的预激励(preactivation)。
  其中, ω?是模型参数, b是常误差项, Φ()是激励方程。常用的激励方程有几种。Rosenblatt最初的感知器用的是阶跃函数(Heaviside step function或unit step function)作为激励函数。函数公式如 下所示:

  如果加权解释变量的和加上常误差项之和大于0,则激励方程返回1,此时感知器就把样本归类为阳 性。否则,激励方程返回0,感知器就把样本归类为阴性。阶跃函数图形如下所示:

  另一个常用的激励函数是逻辑S形(logistic sigmoid )激励函数。这个激励函数的梯度分布可以更有 效的计算,在处理后面的ANN算法时十分有效。其计算公式如下:

  其中, x是加权输入的和。这个模型与第四章的逻辑方程类似,是解释变量值与模型参数的线性组合,与逻辑回归模型是一样的。虽然用逻辑S形激励函数的感知器与逻辑回归是一样的,但是要估计 的参数不同。

时间: 2024-10-25 10:09:15

感知器的相关文章

多层感知器学习

1.多层感知器简介 多层感知器(MLP)可以看做一个逻辑回归,不过它的输入要先进行一个非线性变换,这样数据就被映射到线性可分的空间了,这个空间我们称为隐藏层.通常单层隐藏层就可以作为一个感知器了,其结构如下图所示: 这里输入层首先通过权重矩阵和偏置得到总输出值并且通过tanh函数作一个非线性变换就可以得到hidden layer,然后从hidden layer到output layer可以使用之前的逻辑回归进行操作. 这里我们同样使用SGD算法来对参数进行更新,参数共有四个,分别是input-h

机器学习 —— 基础整理(六):线性判别函数——感知器、松弛算法、Ho-Kashyap算法

本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 (一)线性判别函数与广义线性判别函数 一.线性判别函数 这篇总结继续关注分类问题.假设判别函数(Discriminant function)的参数形式已知,用训练的方法直接根据样本估计判别函数的参数.线性判别函数的形式为: $$g(\textbf x)=\textbf w^{\top}\textbf x+w_0$$ $\textbf x\in \mathbb R^d$ 是

Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖

Rosenblatt感知器详解

在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰.这条险路的第一个拦路虎就是Rosenblatt感知器.为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型.还因为学习Rosenblatt感知器能够帮助了解神经元的结构.信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题.当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路的猛虎.自然是在理解这

神经网络与人工智能No1-Rosenblatt感知器

     直入正题,首先要确定的是Rosenblatt感知器的应用范围是线性可分模型(通俗的讲就是在N维空间中存在一个超平面可以将整个模型一分为二)其作用就是分类,由一个具有可调突触权值和偏置的神经元组成. 模式:事务的标准样式. 感知器:感知器模型(神经元)+感知器算法(收敛). 建立在一个神经元上的感知器只能完成两类的模式分类,扩展多个神经元可完成多类的模式分类.

感知器与梯度下降

声明:本文由Ronny发表在http://www.cnblogs.com/ronny/p/ann_01.html ,如需转载请注明出处 一.前言 1,什么是神经网络? 人工神经网络(ANN)又称神经网络(NN),它是一种受生物学启发而产生的一种模拟人脑的学习系统.它通过相互连结的结点构成一个复杂的网络结构,每一个结点都具有多个输入和一个输出,并且该结点与其他结点以一个权重因子相连在一起.通俗来说,神经网络是一种学习器,给它一组输入,它会得到一组输出,神经网络里的结点相互连结决定了输入的数据在里面

人工神经网络之感知器算法

感知器作为人工神经网络中最基本的单元,有多个输入和一个输出组成.虽然我们的目的是学习很多神经单元互连的网络,但是我们还是需要先对单个的神经单元进行研究. 感知器算法的主要流程: 首先得到n个输入,再将每个输入值加权,然后判断感知器输入的加权和最否达到某一阀值v,若达到,则通过sign函数输出1,否则输出-1. 为了统一表达式,我们将上面的阀值v设为-w0,新增变量x0=1,这样就可以使用w0x0+w1x1+w2x2+…+wnxn>0来代替上面的w1x1+w2x2+…+wnxn>v.于是有: 从

Coursera机器学习基石 第2讲:感知器

第一讲中我们学习了一个机器学习系统的完整框架,包含以下3部分:训练集.假设集.学习算法 一个机器学习系统的工作原理是:学习算法根据训练集,从假设集合H中选择一个最好的假设g,使得g与目标函数f尽可能低接近.H称为假设空间,是由一个学习模型的参数决定的假设构成的一个空间.而我们这周就要学习一个特定的H——感知器模型. 感知器模型在神经网络发展历史中占有特殊地位,并且是第一个具有完整算法描述的神经网络学习算法(称为感知器学习算法:PLA).这个算法是由一位心理学家Rosenblatt在1958年提出

感知器的训练算法

 1.感知器算法来源和基本思想 “感知器”一词出自于20世纪50年代中期到60年代中期人们对一种分类学习机模型的称呼,它是属于有关动物和机器学习的仿生学领域中的问题.当时的一些研究者认为感知器是一种学习机的强有力模型,后来发现估计过高了,但发展感知器的一些相关概念仍然沿用下来. 采用感知器算法(Perception Approach)能通过对训练模式样本集的“学习”得到判别函数的系数.由于该算法不需要对各类别中模式的统计性质做任何假设,因此称为确定性的方法. 感知器算法实质上是一种赏罚过程: –

Python_sklearn机器学习库学习笔记(七)the perceptron(感知器)

一.感知器 感知器是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的,其灵感来自于对人脑的仿真,大脑是处理信息的神经元(neurons)细胞和链接神经元细胞进行信息传递的突触(synapses)构成. 一个神经元可以看做将一个或者多个输入处理成一个输出的计算单元.一个感知器函数类似于一个神经元:它接受一个或多个输入,处理 他们然后返回一个输出.神经元可以实时,错误驱动的学习,神经元可以通过一个训练样本不断的更新参数,而非一次使用整套的数据.实时学习可能有效的处理