转载:resNet论文笔记

《Deep Residual Learning for Image Recognition》是2016年 kaiming大神CVPR的最佳论文

原文:http://m.blog.csdn.net/justpsss/article/details/77103077

摘要

resNet主要解决一个问题,就是更深的神经网络如何收敛的问题,为了解决这个问题,论文提出了一个残差学习的框架。然后简单跟VGG比较了一下,152层的残差网络,比VGG深了8倍,但是比VGG复杂度更低,当然在ImageNet上的表现肯定比VGG更好,是2015年ILSVRC分类任务的冠军。

另外用resNet作为预训练模型的检测和分割效果也要更好,这个比较好理解,分类效果提升必然带来检测和分割的准确性提升。

介绍

在resNet之前,随着网络层数的增加,收敛越来越难,大家通常把其原因归结为梯度消失或者梯度爆炸,这是不对的。另外当训练网络的时候,也会有这样一个问题,当网络层数加深的时候,准确率可能会快速的下降,这当然也不是由过拟合导致的。我们可以这样理解,构造一个深度模型,我们把新加的层叫做identity mapping(这个mapping实在不知道怎么翻译好,尴尬……),而其他层从学好的浅层模型复制过来。现在我们需要保证这个构造的深度模型并不会比之前的浅层模型产生更高的训练错误,然而目前并没有好的比较方法。

从图上可以看到,层数越多,收敛越慢,且error更高。

在论文中,kaiming大佬提出了一个深度残差学习框架来解决网络加深之后准确率下降的问题。用公式来表示,假如我们需要的理想的mapping定义为H(x),那么我们新加的非线性层就是F(x):=H(x)?x,原始的mapping就从x变成了F(x)+x。也就是说,如果我们之前的x是最优的,那么新加的identity mapping F(x)就应该都是0,而不会是其他的值。

这样整个残差网络是端对端(end-to-end)的,可以通过随机梯度下降反向传播,而且实现起来很简单(实际上就是两层求和,在Caffe中用Eltwise层实现)。至于它为什么收敛更快,error更低,我是这么理解的:

我们知道随机梯度下降就是用的链式求导法则,我们对H(x)求导,相当于对F(x)+x求导,那么这个梯度值就会在1附近(x的导数是1),相比之前的plain网络,自然收敛更快。

深度残差学习

假设多个线性和非线性的组合层可以近似任意复杂函数(这是一个开放性的问题),那么当然也可以逼近残差函数H(x)?x(假设输入和输出的维度相同)。

论文中残差模块定义为:

y=F(x,wi)+x

其中,x代表输入,y代表输出,F(x,wi)代表需要学习的残差mapping。像上图firgure 2有两层网络,用F=W2σ(W1x)表示,这里σ表示ReLU激活层。这里Wx是卷积操作,是线性的,ReLU是非线性的。

其中x和F的维度一定要相同,如果不同的话,可以通过一个线性映射Ws来匹配维度:

y=F(x,Wi)+Wsx

这里F是比较灵活的,可以包含两层或者三层,甚至更多层。但是如果只有一层的话,就变成了y=Wix+x,这就是普通的线性函数了,就没有意义了。

接下来就是按照这个思路将网络结构加深了,下面列出几种结构:

最后是一个更深的瓶颈结构问题,论文中用三个1x1,3x3,1x1的卷积层代替前面说的两个3x3卷积层,第一个1x1用来降低维度,第三个1x1用来增加维度,这样可以保证中间的3x3卷积层拥有比较小的输入输出维度。

好了,resNet读到这里基本上差不多了,当然啦,后来又出了resNet的加宽版resNeXt,借鉴了GoogLeNet的思想,以后有机会再细读

最后附图:ResNet-20 和ResNet-50 模型结构,由于模型太大,图像显示不清晰,这里只黏贴很小的一部分:

name: "resnet20_cifar10"
layer {
  name: "Input1"
  type: "Input"
  top: "data"
  input_param {
    shape {
      dim: 1
      dim: 3
      dim: 32
      dim: 32
    }
  }
}

layer {
  name: "conv_0"
  type: "Convolution"
  bottom: "data"
  top: "conv_0"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_0"
  type: "BatchNorm"
  bottom: "conv_0"
  top: "conv_0"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_0"
  type: "Scale"
  bottom: "conv_0"
  top: "conv_0"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_0"
  type: "ReLU"
  bottom: "conv_0"
  top: "conv_0"
}
layer {
  name: "conv_1"
  type: "Convolution"
  bottom: "conv_0"
  top: "conv_1"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_1"
  type: "BatchNorm"
  bottom: "conv_1"
  top: "conv_1"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_1"
  type: "Scale"
  bottom: "conv_1"
  top: "conv_1"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_1"
  type: "ReLU"
  bottom: "conv_1"
  top: "conv_1"
}
layer {
  name: "conv_2"
  type: "Convolution"
  bottom: "conv_1"
  top: "conv_2"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_2"
  type: "BatchNorm"
  bottom: "conv_2"
  top: "conv_2"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_2"
  type: "Scale"
  bottom: "conv_2"
  top: "conv_2"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_2"
  type: "Eltwise"
  bottom: "conv_2"
  bottom: "conv_0"
  top: "elem_2"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_3"
  type: "Convolution"
  bottom: "elem_2"
  top: "conv_3"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_3"
  type: "BatchNorm"
  bottom: "conv_3"
  top: "conv_3"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_3"
  type: "Scale"
  bottom: "conv_3"
  top: "conv_3"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_3"
  type: "ReLU"
  bottom: "conv_3"
  top: "conv_3"
}
layer {
  name: "conv_4"
  type: "Convolution"
  bottom: "conv_3"
  top: "conv_4"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_4"
  type: "BatchNorm"
  bottom: "conv_4"
  top: "conv_4"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_4"
  type: "Scale"
  bottom: "conv_4"
  top: "conv_4"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_4"
  type: "Eltwise"
  bottom: "conv_4"
  bottom: "elem_2"
  top: "elem_4"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_5"
  type: "Convolution"
  bottom: "elem_4"
  top: "conv_5"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_5"
  type: "BatchNorm"
  bottom: "conv_5"
  top: "conv_5"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_5"
  type: "Scale"
  bottom: "conv_5"
  top: "conv_5"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_5"
  type: "ReLU"
  bottom: "conv_5"
  top: "conv_5"
}
layer {
  name: "conv_6"
  type: "Convolution"
  bottom: "conv_5"
  top: "conv_6"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_6"
  type: "BatchNorm"
  bottom: "conv_6"
  top: "conv_6"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_6"
  type: "Scale"
  bottom: "conv_6"
  top: "conv_6"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_6"
  type: "Eltwise"
  bottom: "conv_6"
  bottom: "elem_4"
  top: "elem_6"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_7"
  type: "Convolution"
  bottom: "elem_6"
  top: "conv_7"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_7"
  type: "BatchNorm"
  bottom: "conv_7"
  top: "conv_7"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_7"
  type: "Scale"
  bottom: "conv_7"
  top: "conv_7"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_7"
  type: "ReLU"
  bottom: "conv_7"
  top: "conv_7"
}
layer {
  name: "conv_8"
  type: "Convolution"
  bottom: "conv_7"
  top: "conv_8"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_8"
  type: "BatchNorm"
  bottom: "conv_8"
  top: "conv_8"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_8"
  type: "Scale"
  bottom: "conv_8"
  top: "conv_8"
  scale_param {
    bias_term: true
  }
}

layer {
  name: "proj_7"
  type: "Convolution"
  bottom: "elem_6"
  top: "proj_7"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 0
    kernel_size: 2
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "proj_norm_7"
  type: "BatchNorm"
  bottom: "proj_7"
  top: "proj_7"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "proj_scale_7"
  type: "Scale"
  bottom: "proj_7"
  top: "proj_7"
  scale_param {
    bias_term: true
  }
}

layer {
  name: "elem_8"
  type: "Eltwise"
  bottom: "conv_8"
  bottom: "proj_7"
  top: "elem_8"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_9"
  type: "Convolution"
  bottom: "elem_8"
  top: "conv_9"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_9"
  type: "BatchNorm"
  bottom: "conv_9"
  top: "conv_9"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_9"
  type: "Scale"
  bottom: "conv_9"
  top: "conv_9"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_9"
  type: "ReLU"
  bottom: "conv_9"
  top: "conv_9"
}
layer {
  name: "conv_10"
  type: "Convolution"
  bottom: "conv_9"
  top: "conv_10"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_10"
  type: "BatchNorm"
  bottom: "conv_10"
  top: "conv_10"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_10"
  type: "Scale"
  bottom: "conv_10"
  top: "conv_10"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_10"
  type: "Eltwise"
  bottom: "conv_10"
  bottom: "elem_8"
  top: "elem_10"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_11"
  type: "Convolution"
  bottom: "elem_10"
  top: "conv_11"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_11"
  type: "BatchNorm"
  bottom: "conv_11"
  top: "conv_11"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_11"
  type: "Scale"
  bottom: "conv_11"
  top: "conv_11"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_11"
  type: "ReLU"
  bottom: "conv_11"
  top: "conv_11"
}
layer {
  name: "conv_12"
  type: "Convolution"
  bottom: "conv_11"
  top: "conv_12"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_12"
  type: "BatchNorm"
  bottom: "conv_12"
  top: "conv_12"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_12"
  type: "Scale"
  bottom: "conv_12"
  top: "conv_12"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_12"
  type: "Eltwise"
  bottom: "conv_12"
  bottom: "elem_10"
  top: "elem_12"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_13"
  type: "Convolution"
  bottom: "elem_12"
  top: "conv_13"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_13"
  type: "BatchNorm"
  bottom: "conv_13"
  top: "conv_13"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_13"
  type: "Scale"
  bottom: "conv_13"
  top: "conv_13"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_13"
  type: "ReLU"
  bottom: "conv_13"
  top: "conv_13"
}
layer {
  name: "conv_14"
  type: "Convolution"
  bottom: "conv_13"
  top: "conv_14"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_14"
  type: "BatchNorm"
  bottom: "conv_14"
  top: "conv_14"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_14"
  type: "Scale"
  bottom: "conv_14"
  top: "conv_14"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "proj_13"
  type: "Convolution"
  bottom: "elem_12"
  top: "proj_13"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 0
    kernel_size: 2
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "proj_norm_13"
  type: "BatchNorm"
  bottom: "proj_13"
  top: "proj_13"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "proj_scale_13"
  type: "Scale"
  bottom: "proj_13"
  top: "proj_13"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_14"
  type: "Eltwise"
  bottom: "conv_14"
  bottom: "proj_13"
  top: "elem_14"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_15"
  type: "Convolution"
  bottom: "elem_14"
  top: "conv_15"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_15"
  type: "BatchNorm"
  bottom: "conv_15"
  top: "conv_15"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_15"
  type: "Scale"
  bottom: "conv_15"
  top: "conv_15"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_15"
  type: "ReLU"
  bottom: "conv_15"
  top: "conv_15"
}
layer {
  name: "conv_16"
  type: "Convolution"
  bottom: "conv_15"
  top: "conv_16"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_16"
  type: "BatchNorm"
  bottom: "conv_16"
  top: "conv_16"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_16"
  type: "Scale"
  bottom: "conv_16"
  top: "conv_16"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_16"
  type: "Eltwise"
  bottom: "conv_16"
  bottom: "elem_14"
  top: "elem_16"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "conv_17"
  type: "Convolution"
  bottom: "elem_16"
  top: "conv_17"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_17"
  type: "BatchNorm"
  bottom: "conv_17"
  top: "conv_17"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_17"
  type: "Scale"
  bottom: "conv_17"
  top: "conv_17"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "relu_17"
  type: "ReLU"
  bottom: "conv_17"
  top: "conv_17"
}
layer {
  name: "conv_18"
  type: "Convolution"
  bottom: "conv_17"
  top: "conv_18"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "norm_18"
  type: "BatchNorm"
  bottom: "conv_18"
  top: "conv_18"
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  param {
    lr_mult: 0.0
    decay_mult: 0.0
  }
  batch_norm_param {
    use_global_stats: true
    moving_average_fraction: 0.95
  }
}
layer {
  name: "scale_18"
  type: "Scale"
  bottom: "conv_18"
  top: "conv_18"
  scale_param {
    bias_term: true
  }
}
layer {
  name: "elem_18"
  type: "Eltwise"
  bottom: "conv_18"
  bottom: "elem_16"
  top: "elem_18"
  eltwise_param {
    operation: SUM
  }
}

layer {
  name: "pool_19"
  type: "Pooling"
  bottom: "elem_18"
  top: "pool_19"
  pooling_param {
    pool: AVE
    global_pooling: true
  }
}
layer {
  name: "fc_19"
  type: "InnerProduct"
  bottom: "pool_19"
  top: "fc_19"
  param {
    lr_mult: 1.0
    decay_mult: 2.0
  }
  param {
    lr_mult: 1.0
    decay_mult: 0.0
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

name: "ResNet-50"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224

layer {
    bottom: "data"
    top: "conv1"
    name: "conv1"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 7
        pad: 3
        stride: 2
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "bn_conv1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "scale_conv1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "conv1_relu"
    type: "ReLU"
}

layer {
    bottom: "conv1"
    top: "pool1"
    name: "pool1"
    type: "Pooling"
    pooling_param {
        kernel_size: 3
        stride: 2
        pool: MAX
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch1"
    name: "res2a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "bn2a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "scale2a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch2a"
    name: "res2a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "bn2a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "scale2a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "res2a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2b"
    name: "res2a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "bn2a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "scale2a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "res2a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2c"
    name: "res2a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "bn2a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "scale2a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch1"
    bottom: "res2a_branch2c"
    top: "res2a"
    name: "res2a"
    type: "Eltwise"
}

layer {
    bottom: "res2a"
    top: "res2a"
    name: "res2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "bn2b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "scale2b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2b"
    name: "res2b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "bn2b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "scale2b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "res2b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2c"
    name: "res2b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "bn2b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "scale2b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a"
    bottom: "res2b_branch2c"
    top: "res2b"
    name: "res2b"
    type: "Eltwise"
}

layer {
    bottom: "res2b"
    top: "res2b"
    name: "res2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b"
    top: "res2c_branch2a"
    name: "res2c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "bn2c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "scale2c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "res2c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2b"
    name: "res2c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "bn2c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "scale2c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "res2c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2c"
    name: "res2c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "bn2c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "scale2c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b"
    bottom: "res2c_branch2c"
    top: "res2c"
    name: "res2c"
    type: "Eltwise"
}

layer {
    bottom: "res2c"
    top: "res2c"
    name: "res2c_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c"
    top: "res3a_branch1"
    name: "res3a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "bn3a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "scale3a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c"
    top: "res3a_branch2a"
    name: "res3a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "bn3a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "scale3a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "res3a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2b"
    name: "res3a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "bn3a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "scale3a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "res3a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2c"
    name: "res3a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "bn3a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "scale3a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch1"
    bottom: "res3a_branch2c"
    top: "res3a"
    name: "res3a"
    type: "Eltwise"
}

layer {
    bottom: "res3a"
    top: "res3a"
    name: "res3a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a"
    top: "res3b_branch2a"
    name: "res3b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "bn3b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "scale3b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "res3b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2b"
    name: "res3b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "bn3b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "scale3b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "res3b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2c"
    name: "res3b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "bn3b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "scale3b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a"
    bottom: "res3b_branch2c"
    top: "res3b"
    name: "res3b"
    type: "Eltwise"
}

layer {
    bottom: "res3b"
    top: "res3b"
    name: "res3b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b"
    top: "res3c_branch2a"
    name: "res3c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "bn3c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "scale3c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "res3c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2b"
    name: "res3c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "bn3c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "scale3c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "res3c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2c"
    name: "res3c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "bn3c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "scale3c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b"
    bottom: "res3c_branch2c"
    top: "res3c"
    name: "res3c"
    type: "Eltwise"
}

layer {
    bottom: "res3c"
    top: "res3c"
    name: "res3c_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c"
    top: "res3d_branch2a"
    name: "res3d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "bn3d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "scale3d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "res3d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2b"
    name: "res3d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "bn3d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "scale3d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "res3d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2c"
    name: "res3d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "bn3d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "scale3d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c"
    bottom: "res3d_branch2c"
    top: "res3d"
    name: "res3d"
    type: "Eltwise"
}

layer {
    bottom: "res3d"
    top: "res3d"
    name: "res3d_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d"
    top: "res4a_branch1"
    name: "res4a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "bn4a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "scale4a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d"
    top: "res4a_branch2a"
    name: "res4a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "bn4a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "scale4a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "res4a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2b"
    name: "res4a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "bn4a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "scale4a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "res4a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2c"
    name: "res4a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "bn4a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "scale4a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch1"
    bottom: "res4a_branch2c"
    top: "res4a"
    name: "res4a"
    type: "Eltwise"
}

layer {
    bottom: "res4a"
    top: "res4a"
    name: "res4a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a"
    top: "res4b_branch2a"
    name: "res4b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "bn4b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "scale4b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "res4b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2b"
    name: "res4b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "bn4b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "scale4b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "res4b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2c"
    name: "res4b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "bn4b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "scale4b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a"
    bottom: "res4b_branch2c"
    top: "res4b"
    name: "res4b"
    type: "Eltwise"
}

layer {
    bottom: "res4b"
    top: "res4b"
    name: "res4b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b"
    top: "res4c_branch2a"
    name: "res4c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "bn4c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "scale4c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "res4c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2b"
    name: "res4c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "bn4c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "scale4c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "res4c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2c"
    name: "res4c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "bn4c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "scale4c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b"
    bottom: "res4c_branch2c"
    top: "res4c"
    name: "res4c"
    type: "Eltwise"
}

layer {
    bottom: "res4c"
    top: "res4c"
    name: "res4c_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c"
    top: "res4d_branch2a"
    name: "res4d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "bn4d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "scale4d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "res4d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2b"
    name: "res4d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "bn4d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "scale4d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "res4d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2c"
    name: "res4d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "bn4d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "scale4d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c"
    bottom: "res4d_branch2c"
    top: "res4d"
    name: "res4d"
    type: "Eltwise"
}

layer {
    bottom: "res4d"
    top: "res4d"
    name: "res4d_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d"
    top: "res4e_branch2a"
    name: "res4e_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "bn4e_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "scale4e_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "res4e_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2b"
    name: "res4e_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "bn4e_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "scale4e_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "res4e_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2c"
    name: "res4e_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "bn4e_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "scale4e_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d"
    bottom: "res4e_branch2c"
    top: "res4e"
    name: "res4e"
    type: "Eltwise"
}

layer {
    bottom: "res4e"
    top: "res4e"
    name: "res4e_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e"
    top: "res4f_branch2a"
    name: "res4f_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "bn4f_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "scale4f_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "res4f_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2b"
    name: "res4f_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "bn4f_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "scale4f_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "res4f_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2c"
    name: "res4f_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "bn4f_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "scale4f_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e"
    bottom: "res4f_branch2c"
    top: "res4f"
    name: "res4f"
    type: "Eltwise"
}

layer {
    bottom: "res4f"
    top: "res4f"
    name: "res4f_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f"
    top: "res5a_branch1"
    name: "res5a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "bn5a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "scale5a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f"
    top: "res5a_branch2a"
    name: "res5a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "bn5a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "scale5a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "res5a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2b"
    name: "res5a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "bn5a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "scale5a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "res5a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2c"
    name: "res5a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "bn5a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "scale5a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch1"
    bottom: "res5a_branch2c"
    top: "res5a"
    name: "res5a"
    type: "Eltwise"
}

layer {
    bottom: "res5a"
    top: "res5a"
    name: "res5a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a"
    top: "res5b_branch2a"
    name: "res5b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "bn5b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "scale5b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "res5b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2b"
    name: "res5b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "bn5b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "scale5b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "res5b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2c"
    name: "res5b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "bn5b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "scale5b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a"
    bottom: "res5b_branch2c"
    top: "res5b"
    name: "res5b"
    type: "Eltwise"
}

layer {
    bottom: "res5b"
    top: "res5b"
    name: "res5b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b"
    top: "res5c_branch2a"
    name: "res5c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "bn5c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "scale5c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "res5c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2b"
    name: "res5c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "bn5c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "scale5c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "res5c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2c"
    name: "res5c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "bn5c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "scale5c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b"
    bottom: "res5c_branch2c"
    top: "res5c"
    name: "res5c"
    type: "Eltwise"
}

layer {
    bottom: "res5c"
    top: "res5c"
    name: "res5c_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c"
    top: "pool5"
    name: "pool5"
    type: "Pooling"
    pooling_param {
        kernel_size: 7
        stride: 1
        pool: AVE
    }
}

layer {
    bottom: "pool5"
    top: "fc1000"
    name: "fc1000"
    type: "InnerProduct"
    inner_product_param {
        num_output: 1000
    }
}

layer {
    bottom: "fc1000"
    top: "prob"
    name: "prob"
    type: "Softmax"
}

时间: 2024-10-01 20:02:27

转载:resNet论文笔记的相关文章

论文笔记(2):A fast learning algorithm for deep belief nets.

论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm for Deep Belief Nets.这篇论文一开始读起来是相当费劲的,学习了好几天才了解了相关的背景,慢慢的思路也开始清晰起来.DBN算法就是Wake-Sleep算法+RBM,但是论文对Wake-Sleep算法解释特别少.可能还要学习Wake-Sleep和RBM相关的的知识才能慢慢理解,今天

论文笔记(1)——《Where's Wally?Precise User Discovery Attacks in Location Proximity Services》

Abstract: 位置相近服务在社交和移动网络的广泛使用是基于可用性和用户隐私的平衡,但引发了三角定位攻击的风险.文章系统化地讨论了此类攻击的防范,包括问题在不同临近模型下的形式化,针对不同模型的有效攻击,以及攻击需要的询问次数的确界,并针对实际应用进行实验. 一)对攻击的建模:UDP,已知包含点p的欧氏平面区域A以及一个提供邻域信息的黑箱,找到点p的位置 邻域(proximity oracle)定义:,以某点为圆心的区域 原问题化为两部分: 1)Disk Coverage:将A用最少的r-邻

Kalman论文笔记

笔者前段时间阅读了一些关于Kalman的姿态论文,本想把Kalman的知识点也整理出来发布,无奈这编辑器不给力,太多的公式无法复制粘贴,图片格式上传的太复杂,就放弃了.因此笔者只发布Kalman的论文笔记,用表格的形式分析了几篇论文的Kalman filter的结构,希望对大家有帮助. 表格中包含有 论文名称 状态变量 转移矩阵 观测变量 观测矩阵 过程噪声 观测噪声 备注 百度网盘:pan.baidu.com/s/1kT1iC6r

DL4NLP —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.应用场景:比如说用户在拍了一张照片后,利用Image Caption技术可以为其匹配合适的文字,方便以后检索或省去用户手动配字:此外它还可以帮助视觉障碍者去理解图像内容.类似的任务还有Video Caption,输入是一段视频,输出是对视频的描述. (一)任务描述 目前来说,Image Caption任务主要集中在英文上,数

论文笔记 Deep Patch Learning for Weakly Supervised Object Classi cation and Discovery

Background 1) "Patch-level image representation"的优势 "Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background" &

Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构如下图: 用户编写发布topoloy到Aurora调度器.每一个topology都作为一个Aurora的job在运行.每一个job包括几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master,其他的Cont

Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪,算是单目标跟踪中比较早的应用强化学习算法的一个工作.  在基于深度学习的方法中,想学习一个较好的 robust spatial and temporal representation for continuous video data 是非常困难的.  尽管最近的 CNN based tracke

【转】Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

原作者:zouxy09 原文链接:http://blog.csdn.net/zouxy09/article/details/9993371 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己

转载:android笔记--android中的多线程--Handler, Looper, MessageQueue, Message类

什么时候使用多线程: 1. 耗时操作使用多线程, 耗时操作放在UI线程中会导致用户的操作无法得到响应. 2. 阻塞操作使用多线程, 理由同上. 3. 多核CUP的设备使用多线程, 可以有效提高CPU的利用率. 4. 并行操作使用多线程. android中的多线程模型主要涉及的类有:Looper, Handler, MessageQueue, Message等. 一:Looper类: 1 static final ThreadLocal<Looper> sThreadLocal = new Th