MapReduce中的分区方法Partitioner

在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中;按照性别划分的话,需要把同一性别的数据放到一个文件中。我们知道最终的输出数据是来自于Reducer任务。那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行。Reducer任务的数据来自于Mapper任务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行。Mapper任务划分数据的过程就称作Partition。负责实现划分数据的类称作Partitioner

在我们前面讲过的例子中,始终没有提到分区,那是因为框架内置了分区类,称作HashPartitioner。我们看一下源码,如图6-6

<ignore_js_op>

图6-6

在图6-6中,HashPartitioner是处理Mapper任务输出的,getPartition()方法有三个形参,key、value分别指的是Mapper任务的输出,numReduceTasks指的是设置的Reducer任务数量,默认值是1。那么任何整数与1相除的余数肯定是0。也就是说getPartition(…)方法的返回值总是0。也就是Mapper任务的输出总是送给一个Reducer任务,最终只能输出到一个文件中。

据此分析,如果想要最终输出到多个文件中,在Mapper任务中对数据应该划分到多个区中。那么,我们只需要按照一定的规则让getPartition(…)方法的返回值是0,1,2,3…即可。

假设我们按照性别分区,那么可以覆盖Partitioner类的getpartition(…)方法,代码如图6-7

<ignore_js_op>

图6-7

在图6-7中,我们分别使用0、1、2与numPartitions相除。如果想把数据分到三个不同的输出中,意味着numPartitions的值是3。这样,0%3、1%3、2%3的值才是三个不同的。那么,我们怎么使用哪?只需要在驱动中进行两个操作即可,如图6-8

<ignore_js_op>

图6-8

在图6-8中,我们使用了自定义的分区类,并且制定了numReduceTasks。这里的numReduceTasks在内部就把值赋给了分区类中形式参数numPartitions。

时间: 2024-10-06 10:58:55

MapReduce中的分区方法Partitioner的相关文章

Parallel中分区器Partitioner的简单使用

Partitioner.Create(1,10,4).GetDynamicPartitions() 为长度为10的序列创建分区,每个分区至多4个元素,分区方法及结果:Partitioner.Create(0, 10, 4).GetDynamicPartitions() 得到3个前闭后开区间: [0, 4)即{0, 1, 2, 3}, [4, 8)即{4, 5, 6, 7}, [8, 10)即{8, 9},  注意被枚举的数字均为数组下标: 为长度为10的序列创建分区,至多4个分区,分区方法及结果

MapReduce中Shuffle过程整理

MapReduce中的Shuffle过程分为Map端和Reduce端两个过程. Map端: 1.(Hash Partitioner)执行完Map函数后,根据key进行hash,并对该结果进行Reduce的数量取模(该键值对将会由某个reduce端处理)得到一个分区号. 2.(Sort Combiner)将该键值对和分区号序列化之后的字节写入到内存缓存区(大小为100M,装载因子为0.8)中,当内存缓冲区的大小超过100*0.8 = 80M的时候,将会spill(溢出):在溢出之前会在内存缓冲区中

MapReduce中combine、partition、shuffle的作用是什么

http://www.aboutyun.com/thread-8927-1-1.html Mapreduce在hadoop中是一个比較难以的概念.以下须要用心看,然后自己就能总结出来了. 概括: combine和partition都是函数.中间的步骤应该仅仅有shuffle! 1.combine combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,能够自己定义的. combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一

Hadoop学习之路(二十三)MapReduce中的shuffle详解

概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数据混洗 ——(核心机制:数据分区,排序,局部聚合,缓存,拉取,再合并 排序) 3.具体来说:就是将 MapTask 输出的处理结果数据,按照 Partitioner 组件制定的规则分发 给 ReduceTask,并在分发的过程中,对数据按 key 进行了分区和排序 MapReduce的Shuffle

【转】Hadoop在MapReduce中使用压缩详解

原文链接 http://www.cnblogs.com/ggjucheng/archive/2012/04/22/2465580.html#top hadoop对于压缩文件的支持 hadoop对于压缩格式的是透明识别,我们的MapReduce任务的执行是透明的,hadoop能够自动为我们 将压缩的文件解压,而不用我们去关心. 如果我们压缩的文件有相应压缩格式的扩展名(比如lzo,gz,bzip2等),hadoop就会根据扩展名去选择解码器解压. hadoop对每个压缩格式的支持,详细见下表:  

Hadoop学习笔记—11.MapReduce中的排序和分组

一.写在之前的 1.1 回顾Map阶段四大步凑 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排序和分组,默认情况下,是按照key进行排序和分组. 1.2 实验场景数据文件 在一些特定的数据文件中,不一定都是类似于WordCount单次统计这种规范的数据,比如下面这类数据,它虽然只有两列,但是却有一定的实践意义. 3 3 3 2 3 1 2 2 2 1 1 1 (1)如果按照第一列升序排列,当

MapReduce中TextInputFormat分片和读取分片数据源码级分析

InputFormat主要用于描述输入数据的格式(我们只分析新API,即org.apache.hadoop.mapreduce.lib.input.InputFormat),提供以下两个功能: (1)数据切分:按照某个策略将输入数据切分成若干个split,以便确定MapTask个数以及对应的split: (2)为Mapper提供输入数据:读取给定的split的数据,解析成一个个的key/value对,供mapper使用. InputFormat有两个比较重要的方法:(1)List<InputSp

MapReduce中作业调度机制

MapReduce中作业调度机制主要有3种: 1.先入先出FIFO      Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间片轮转调度)      为任务分配资源的方法,其目的是随着时间的推移,让提交的作业获取等量的集群共享资源,让用户公平地共享集群.具体做法是:当集群上只有一个任务在运行时,它将使用整个集群,当有其他作业提交时,系统会将TaskTracker节点空间的时间片分配给这些新的作业,并保证每个任务都得到大概等

MapReduce中Map数量的控制

InputFormat这个类是用来处理Map的输入数据的,任务开始时,InputFormat先将HDFS里所有输入文件里的数据分割成逻辑上的InputSpilt对象 这里的split是HDFS中block的部分或者一整块或几个快中的数据的逻辑分割,一个split对应于一个Map,所以Map的数量是由split的数量决定的. 那么怎样去确定InputSpilt的个数呢,下面列出于split个数相关的配置参数: numSplits:来自job.getNumMapTasks(),即在job启动时用or