算术表达式的前缀表达式,中缀表达式和后缀表达式

这里所谓的前缀,中缀,后缀是根据操作符的位置来定的,如果操作符在操作数前面,则称为前缀表达式,例如“- + 1 × + 2 3 4 5”;如果操作符在操作数之间,则称为中缀表达式,例如

“1+((2+3)×4)-5”;如果操作符在操作数后面,则称为后缀表达式,例如“1 2 3 + 4 × + 5 -”。

虽然中缀表达式符合人类的日常思维习惯,但是计算机在存储中缀表达式时,需要使用树这种数据结构,如果表达式过于复杂,那么树的高度会变得很高,大大增加了时间复杂度和空间复杂度。如果转换成线性结构,那么效率将变得高很多,所以需要将中缀表达式先转换成前缀或者后缀表达式,然后依靠栈这种线性数据结构来进行计算。

前缀表达式又叫波兰表达式,后缀表达式又叫逆波兰表达式。前缀表达式基本没有在商业计算机中使用过,所以现实中用的更多的是后缀表达式。

如何将中缀表达式转化成后缀表达式呢?

利用两个栈S1,S2:其中S1存放操作符,S2存放操作数

从左往右遍历中缀表达式,如果遇到数字,则放入S2中,如果遇到操作符,则放入S1中。在放操作符的时候有一定的规则,如果栈为空或栈顶元素为(,则直接压栈。如果是(,也直接压栈;如果栈顶元素为普通操作符,则比较优先级,如果待压栈的操作符比栈顶操作符优先级高,则直接压栈,否则将S1中的栈顶元素出栈,并压入S2中,再接着比较S1栈顶元素的优先级。如果遇到),则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃。最后将S1中剩余的运算符依次弹出并压入S2,逆序输出S2(从栈底到栈顶)便得到了后缀表达式。(注意:等号的优先级最低,因为要到最后才进行赋值操作)

得到后缀表达式之后,计算就变得方便多了,遇到数字就压栈,遇到操作符的时候,pop出栈顶的两个元素,进行计算后将结果又压入栈中,这样一直下去,直到得到最终结果。

将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:

扫描到的元素 S2(栈底->栈顶) S1 (栈底->栈顶) 说明
1 1 数字,直接入栈
+ 1 + S1为空,运算符直接入栈
( 1 + ( 左括号,直接入栈
( 1 + ( ( 同上
2 1 2 + ( ( 数字
+ 1 2 + ( ( + S1栈顶为左括号,运算符直接入栈
3 1 2 3 + ( ( + 数字
) 1 2 3 + + ( 右括号,弹出运算符直至遇到左括号
× 1 2 3 + + ( × S1栈顶为左括号,运算符直接入栈
4 1 2 3 + 4 + ( × 数字
) 1 2 3 + 4 × + 右括号,弹出运算符直至遇到左括号
- 1 2 3 + 4 × + - -与+优先级相同,因此弹出+,再压入-
5 1 2 3 + 4 × + 5 - 数字
到达最右端 1 2 3 + 4 × + 5 - S1中剩余的运算符

因此结果为“1 2 3 + 4 × + 5 -”(需要逆序输出)

时间: 2024-10-24 01:28:31

算术表达式的前缀表达式,中缀表达式和后缀表达式的相关文章

算术表达式的前缀,中缀,后缀相互转换

原博客地址:https://blog.csdn.net/smartab/article/details/81215940 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值.对计算机来说,计算前缀或后缀表达式的值非常简单. 前缀表达式(前缀记法.波

表达式求值(中缀式转后缀式,后缀式求值)NYOJ53测试通过

测试地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=35 package calc; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Scanner; public class Main { //操作符栈 static LinkedList<String>

【转】前缀、中缀、后缀表达式

它们都是对表达式的记法,因此也被称为前缀记法.中缀记法和后缀记法.它们之间的区别在于运算符相对与操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前:中缀和后缀同理. 举例: (3 + 4) × 5 - 6 就是中缀表达式 - × + 3 4 5 6 前缀表达式 3 4 + 5 × 6 - 后缀表达式 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计

java四则运算----前缀、中缀、后缀表达式

接到一个新需求,需要实现可配置公式,然后按公式实现四则运算. 刚拿到需求,第一反应就是用正则匹配‘(’,‘)’,‘+’,‘-’,‘*’,‘/’,来实现四则运算,感觉不复杂. 然后开始coding.发现有点复杂,然后各种for,感觉非常不爽,于是问网上搜了下,发现一种叫波兰式的计算方法,瞬间茅塞顿开. http://blog.csdn.net/antineutrino/article/details/6763722 以下为原文引用 它们都是对表达式的记法,因此也被称为前缀记法.中缀记法和后缀记法.

前缀、中缀、后缀表达式及其求值

它们都是对表达式的记法,因此也被称为前缀记法.中缀记法和后缀记法.它们之间的区别在于运算符相对与操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前:中缀和后缀同理. 比如: (4 + 5) × 6- 7 就是中缀表达式 - × + 4567 前缀表达式 45 + 6×7 - 后缀表达式 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表

前缀表达式、中缀表达式和后缀表达式

前缀.中缀.后缀表达式 前缀.中缀.后缀表达式是对表达式的不同记法,其区别在于运算符相对于操作数的位置不同,前缀表达式的运算符位于操作数之前,中缀和后缀同理 举例: 中缀表达式:1 + (2 + 3) × 4 - 5 前缀表达式:- + 1 × + 2 3 4 5 后缀表达式:1 2 3 + 4 × + 5 - 中缀表达式 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中

[转]中缀表达式、前缀表达式、后缀表达式的相互转换

--------------------------------后缀转中缀---------------------------------------------- 1.建立一个栈,从左向右扫描后缀表达式,遇到运算数则压入栈: 2.遇到运算符就把栈顶两个元素出栈,执行运算,得到的结果作为新的运算符再压入栈: 3.依次走到表达式结尾: 例:把逆波兰式(即后缀表达式)ab+c*转换为中缀表达式: 1)a入栈(0位置) 2)b入栈(1位置) 3)遇到运算符"+",将a和b出栈,执行a+b的

栈的应用之中缀表达式转后缀表达式

1,中缀表达式的定义及为什么要将中缀表达式转换为后缀表达式? 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值.对计算机来说,计算前缀或后缀表达式的值要比中缀表达式简单. 比如,计算机计算后缀表达式的过程如下----后缀表达式的计算机求值: 从左

后缀表达式与中缀表达式互转的理论知识【转】

首先,以下理论来源:http://www.cnblogs.com/hapjin/p/4740801.html 1,后缀表达式计算方式中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法.虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值.对计算机来说,计算前缀或后缀表达式的值要比中缀表达式简单. 比如,计算机计算后缀表达式的过