模型评估和选择

评价分类器性能的度量

分类器评估度量包括准确率(又称“识别率”)、敏感度(或称为召回率recall)、特效性、精度(precision)F1和FΒ。

度量 公式
准确率、识别率
TP+TNP+N
错误率、识分类率
FP+FNP+N
敏感度
TPP
特效性、真负例率
TNN
精度
TPtp+fp
F分数
2?precision?recallprecision+recall
FB
(1+B2)?precision?recallB2?precision+recall

TP:被分类器正确分类的正元组;

TN:被分类器正确分类的负元组;

FP:被错误的标记为正元组的负元组;

FN:被错误标记为负元组的正元组。

混淆矩阵表示

灵敏性

SN=TPP

特异性

SP=TNN

精度和召回率

SP=sensitivityPP+N+specificityNP+N

k倍交叉验证

初始数据随机划分为k个互不相交的自己,每个自己的大小大致相等。训练和检验进行k次。在第i次迭代,分区Di用做检验集,其余的分区一起用作训练模型,

ROC曲线

组合分类

小结

  • 混淆举证可以用来评估分类器的质量。
  • 显著性检验和ROC曲线对于模型选择是有用的。显著性检验可以用来评估两个分类器准确率的差别是否处于偶然。ROC曲线绘制一个或多个分类器的真正例率(或灵敏性)与假正例率(或1-sp)。
  • 组合方法可以通过学习和组合一系列个体基分类模型提高总体的准确率。装袋、提升和随机森林都是流行的组合方法。
时间: 2024-10-28 14:46:34

模型评估和选择的相关文章

机器学习笔记(二)模型评估与选择

2.模型评估与选择 2.1经验误差和过拟合 不同学习算法及其不同参数产生的不同模型,涉及到模型选择的问题,关系到两个指标性,就是经验误差和过拟合. 1)经验误差 错误率(errorrate):分类错误的样本数占样本总数的比例.如果在m个样本中有a个样本分类错误,则错误率E=a/m,相应的,1-a/m称为精度(accuracy),即精度=1-错误率. 误差(error):学习器的实际预测输出和样本的真实输出之间的差异.训练误差或经验误差:学习器在训练集上的误差:泛化误差:学习器在新样本上的误差.

【机器学习 第2章 学习笔记】模型评估与选择

1.训练误差:学习器在训练集上的误差,也称“经验误差” 2.泛化误差:学习器在新样本上的误差 显然,我们的目标是得到在新样本上表现更好的学习器,即泛化误差要小 3.过拟合:学习器把训练样本学的太好了,导致泛化性能下降(学过头了...让我联想到有些人死读书,读死书,僵化,不懂得变通和举一反三) 原因:学习能力过于强大,把一些不太一般的特性也学了进来 针对措施:不好解决,是机器学习面临的关键障碍 4.欠拟合:就是连训练集都没学好,更别说泛化了(有点管中窥豹,盲人摸象的意思). 原因: 学习能力低下

机器学习总结之第二章模型评估与选择

机器学习总结之第二章模型评估与选择 2.1经验误差与过拟合 错误率 = a个样本分类错误/m个样本 精度 = 1 - 错误率 误差:学习器实际预测输出与样本的真是输出之间的差异. 训练误差:即经验误差.学习器在训练集上的误差. 泛化误差:学习器在新样本上的误差. 过拟合:学习器把训练样本学的"太好",把不太一般的特性学到了,泛化能力下降,对新样本的判别能力差.必然存在,无法彻底避免,只能够减小过拟合风险. 欠拟合:对训练样本的一半性质尚未学好. 2.2评估方法 (在现实任务中,还需考虑

【机器学习123】模型评估与选择 (上)

第2章 模型评估与选择 2.1 经验误差与过拟合 先引出几个基本概念: 误差(error):学习器的实际预测输出与样本的真实输出之间的差异. 训练误差(training error):学习器在训练集上的误差,也称"经验误差". 测试误差(testing error):学习器在测试集上的误差. 泛化误差(generalization error):学习器在新样本上的误差. 错误率(error rate):分类错误的样本数占样本总数的比例. 精度(accuracy) = 1 – 错误率.

第二章 模型评估与选择

2.1  经验误差与过拟合 错误率和精度:通常我们把分类错误的样本占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”.(accuracy).即“精度=1-错误率”. 误差:学习期的实际预测误差和样本的真实输出之间的差异称为“误差”(error) 训练误差/经验误差:学习器在训练集上的误差称为“训练误差”(training error)或 “经验误差”(expircial error) 泛化误差(gene

模型评估与选择(1)

模型评估与选择 经验误差与过拟合 (1)错误率:分类错误的样本数占样本总数的比例 精度:1\(-\)错误率 (2)误差:学习器的实际输出与样本真实值之间的差异 误差有训练误差和泛化误差两种.训练误差指的是学习器在训练集上的误差,也称为经验误差:泛化误差指的是在新样本上的误差. (但是,对于训练样本,其分类精度即使是100%,也并不一定代表这个学习器就很好.我们希望得到的是泛化误差小的学习器) (3)过拟合:承接第2点括号内的内容,我们希望得到的学习器,是在新样本上表现很好的学习器,也就是泛化误差

机器学习之模型评估与选择

2.1 经验误差与过拟合 基本概念: 错误率:分类错误数/总样本数 训练误差/经验误差:学习器在训练集上所产生的误差 泛化误差:学习器在测试集上产生的误差 2.2 评估方法 在实际应用中会有多种不同的算法进行选择,对于不同的问题,我们该选择用哪种学习算法和参数配置,是机器学习中的模型选择.无法直接获得泛化误差,训练误差由于过拟合现象的存在也不适合作为标准,我们如何对模型进行评估和选择. 从训练集中随机获取测试集,测试集和训练集互斥.通过对D进行适当的处理,从中产生出训练集S和测试集T,下面介绍几

监督学习之模型评估与选择

一.定义: 监督学习主要包括分类和回归 当输出被限制为有限的一组值(离散数值)时使用分类算法 当输出可以具有范围内的任何树值(连续数值)时使用回归算法 相似度学习是和回归和分类都密切相关的一类监督学习,它的目的是使用相似函数从样本中学习,这个函数可以度量两个对象之间的相似度或关联度 二.监督学习三要素 模型:总结数据的内在规律,用数据函数描述的系统 策略:选取最优模型的评价准则 算法:选取最优模型的具体方法 三.模型评估: 1.训练集和测试集 训练集(training set):训练模型的数据

分类模型评估与选择总结

1.评估分类器性能的度量 当建立好一个分类模型之后,就会考虑这个模型的性能或准确率如何,这里介绍几种分类器评估度量如下表: 假设在有标号的元组组成的训练集上使用分类器.P是正元组数,N是负元组数. 度量 公式 准确率.识别率 (TP+TN)/(P+N) 错误率.误分类率 (FP+FN)/(P+N) 敏感度.真正例率.召回率 TP/P 特效型.真负例率 TN/N 精度 TP/(TP+FP) F.F1.F分数 精度和召回率的调和均值 2*precision*recall/(precision+rec

机器学习 第二章:模型评估与选择-总结

1.数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式. 留出法将数据集划分为两个互斥的集合,为了保持数据的一致性,应该保证两个集合中的类别比例相同.故可以用分层采样的方法.训练集包含350个正例与350个反例,测试集包含150个正例与150个反例. 故有500C350*500C350 种划分方式(排列组合) 2.数据集包含100个样本,其中正反例各一半,假定学习算法所产生的模型是将新样本预测为训