Silver Cow Party
Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow‘s return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Titime units to traverse.
Output
Line 1: One integer: the maximum of time any one cow must walk.
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
题意: 有n个农场,将在农场x举行party,农场a->b用时c;有向图;求所有农场中的牛去到农场x再回去所需的最长时间;可以两次运用Dij算法,用dist[i]表示起点到i
的最短时间
#include<iostream> #include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> #define INF 0xfffffff #define N 1100 using namespace std; #define max(a,b) (a>b?a:b) #define min(a,b) (a<b?a:b) int x,n,m,dist1[N],dist2[N],vis[N]; int maps[N][N]; void Dij1() { int i,j; vis[x]=0; dist1[x]=0; for(i=1; i <= n; i++) { int Min=INF,index=-1; for(j = 1; j <= n; j++) { if(vis[j] == 0 && Min > dist1[j]) { Min = dist1[j]; index = j; } } if(index==-1)break; vis[index]=1; for(j = 1; j <= n; j++) dist1[j] = min(dist1[j],dist1[index] + maps[index][j]); } } void Dij2() { int i,j; vis[x]=0; dist2[x]=0; for(i=1; i <= n; i++) { int Min=INF,index=-1; for(j = 1; j <= n; j++) { if(vis[j] == 0 && Min > dist2[j]) { Min = dist2[j]; index = j; } } if(index==-1)break; vis[index]=1; for(j = 1; j <= n; j++) dist2[j] = min(dist2[j],dist2[index] + maps[j][index]); } } int main() { int i,a,b,c; while(scanf("%d%d%d",&n,&m,&x)!=EOF) { for(i=0;i<=n;i++) { dist1[i]=dist2[i]=INF; for(int j=1;j<=n;j++) maps[i][j]=INF; } while(m--) { scanf("%d%d%d", &a, &b, &c); maps[a][b] = c; } memset(vis,0,sizeof(vis)); Dij1();//去 memset(vis,0,sizeof(vis)); Dij2();//回来; int ans=0; for(i=1;i<=n;i++) { ans=max(ans,dist1[i]+dist2[i]); } printf("%d\n",ans); } return 0; }