前几篇分析了一下AQS的原理和实现。这篇拿Semaphore信号量做样例看看AQS实际是怎样使用的。
Semaphore表示了一种能够同一时候有多个线程进入临界区的同步器,它维护了一个状态表示可用的票据,仅仅有拿到了票据的线程尽能够进入临界区,否则就等待。直到获得释放出的票据。
Semaphore经常使用在资源池中来管理资源。当状态仅仅有1个0两个值时,它退化成了一个相互排斥的同步器。类似锁。
以下来看看Semaphore的代码。
它维护了一个内部类Sync来继承AQS,定制tryXXX方法来使用AQS。
我们之前提到过AQS支持独占和共享两种模式,Semaphore明显就是共享模式。它支持多个线程能够同一时候进入临界区。所以Sync扩展了Shared相关的方法。
能够看到Sync的主要操作都是对状态的无锁改动,它不须要处理AQS队列相关的操作。在聊聊高并发(二十四)解析java.util.concurrent各个组件(六) 深入理解AQS(四) 我们说了AQS提供了tryXXX接口给子类扩展,相当于给子类一个机会,能够自己处理状态,决定是否入同步队列。
1. nonfailTryAcquireShared()非公平的tryAcquire,它立马改动了票据状态,而不须要管是否有先来的线程正在等待,而一旦有可用的票据,就直接获得了锁,不须要进入AQS的队列等待同步。
2. tryReleaseShared()方法负责释放共享状态的资源,它仅仅改动了票据状态。由AQS的releaseShared()方法来负责唤醒在AQS队列等待的线程
3. reducePermits()和drainPermits()方法都是直接改动了状态,从而限制可用的资源
abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 1192457210091910933L; Sync(int permits) { setState(permits); } final int getPermits() { return getState(); } final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next)) return true; } } final void reducePermits(int reductions) { for (;;) { int current = getState(); int next = current - reductions; if (next > current) // underflow throw new Error("Permit count underflow"); if (compareAndSetState(current, next)) return; } } final int drainPermits() { for (;;) { int current = getState(); if (current == 0 || compareAndSetState(current, 0)) return current; } } }
Sync也是一个抽象类,详细的实现是NonfailSync和FairSync。代表了非公平实现和公平实现。在上一篇已经提到,所谓的非公平仅仅是说在获取资源时开了一个口子。能够让后来的线程不须要管在AQS队列中的先来的线程来获取资源。而一旦获取失败,就得进入AQS队列等待,而AQS队列是先来先服务的FIFO队列。
能够看到,NonfailSync和FairSync仅仅是在tryAcquireShared方法的实现上不同,其它都是一样的。
/** * NonFair version */ static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } } /** * Fair version */ static final class FairSync extends Sync { private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } }
再来看看Semaphore自己提供的方法,
1.支持可中断和不可中断的获取/释放
2.支持限时获取
3.支持tryXX获取/释放
4. 支持同一时候获取/释放多个资源
能够看到Semaphore的实现都是基于AQS的方法来作的,单个资源的获取/释放操作都是请求1个资源,所以參数传递的是1,多个资源获取传递了一个int个数。
public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public void acquireUninterruptibly() { sync.acquireShared(1); } public boolean tryAcquire() { return sync.nonfairTryAcquireShared(1) >= 0; } public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } public void release() { sync.releaseShared(1); } public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits); } public void acquireUninterruptibly(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.acquireShared(permits); } public boolean tryAcquire(int permits) { if (permits < 0) throw new IllegalArgumentException(); return sync.nonfairTryAcquireShared(permits) >= 0; } public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout)); } public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits); }
以下用一个实例来測试一下Semaphore的功能。
1. 创建一个有两个票据的Semaphore
2. 创建20个线程来竞争运行race()方法
3. 在race()方法里先打印一句等待获取资源的话,再获取资源,获得资源后打印一句话,最后释放资源,释放资源前打印一句话
package com.lock.test; import java.util.concurrent.Semaphore; public class SemaphoreUsecase { private Semaphore semaphore = new Semaphore(2); public void race(){ System.out.println("Thread " + Thread.currentThread().getName() + " is waiting the resource"); semaphore.acquireUninterruptibly(); try{ System.out.println("Thread " + Thread.currentThread().getName() + " got the resource"); try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } }finally{ System.out.println("Thread " + Thread.currentThread().getName() + " is releasing the resource"); semaphore.release(); } } public static void main(String[] args){ final SemaphoreUsecase usecase = new SemaphoreUsecase(); for(int i = 0; i < 10; i++){ Thread t = new Thread(new Runnable(){ @Override public void run() { usecase.race(); } }, String.valueOf(i)); t.start(); } } }
測试结果:
能够看到先来的两个线程先获得了资源,后来的线程都在等待,当有线程释放资源之后,等待的线程才会去获得资源,直到都获得/释放资源
Thread 0 is waiting the resource Thread 0 got the resource Thread 2 is waiting the resource Thread 2 got the resource Thread 1 is waiting the resource Thread 4 is waiting the resource Thread 3 is waiting the resource Thread 5 is waiting the resource Thread 6 is waiting the resource Thread 7 is waiting the resource Thread 8 is waiting the resource Thread 9 is waiting the resource Thread 2 is releasing the resource Thread 0 is releasing the resource Thread 1 got the resource Thread 4 got the resource Thread 1 is releasing the resource Thread 4 is releasing the resource Thread 3 got the resource Thread 5 got the resource Thread 3 is releasing the resource Thread 5 is releasing the resource Thread 6 got the resource Thread 7 got the resource Thread 7 is releasing the resource Thread 6 is releasing the resource Thread 8 got the resource Thread 9 got the resource Thread 8 is releasing the resource Thread 9 is releasing the resource