学习笔记TF023:下载、缓存、属性字典、惰性属性、覆盖数据流图、资源

确保目录结构存在。每次创建文件,确保父目录已经存在。确保指定路径全部或部分目录已经存在。创建沿指定路径上不存在目录。

下载函数,如果文件名未指定,从URL解析。下载文件,返回本地文件系统文件名。如果文件存在,不下载。如果文件未指定,从URL解析,返回filepath 。实际下载前,检查下载位置是否有目标名称文件。是,跳过下载。下载文件,返回路径。重复下载,把文件从文件系统删除。

import os
import shutil
import errno
from lxml import etree
from urllib.request import urlopen

def ensure_directory(directory):
directory = os.path.expanduser(directory)
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise e

def download(url, directory, filename=None):
if not filename:
_, filename = os.path.split(url)
directory = os.path.expanduser(directory)
ensure_directory(directory)
filepath = os.path.join(directory, filename)
if os.path.isfile(filepath):
return filepath
print(‘Download‘, filepath)
with urlopen(url) as response, open(filepath, ‘wb‘) as file_:
shutil.copyfileobj(response, file_)
return filepath

磁盘缓存修饰器,较大规模数据集处理中间结果保存磁盘公共位置,缓存加载函数修饰器。Python pickle功能实现函数返回值序列化、反序列化。只适合能纳入主存数据集。@disk_cache修饰器,函数实参传给被修饰函数。函数参数确定参数组合是否有缓存。散列映射为文件名数字。如果是‘method‘,跳过第一参数,缓存filepath,‘directory/basename-hash.pickle‘。方法method=False参数通知修饰器是否忽略第一个参数。

import functools
import os
import pickle

def disk_cache(basename, directory, method=False):
directory = os.path.expanduser(directory)
ensure_directory(directory)

def wrapper(func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
key = (tuple(args), tuple(kwargs.items()))
if method and key:
key = key[1:]
filename = ‘{}-{}.pickle‘.format(basename, hash(key))
filepath = os.path.join(directory, filename)
if os.path.isfile(filepath):
with open(filepath, ‘rb‘) as handle:
return pickle.load(handle)
result = func(*args, **kwargs)
with open(filepath, ‘wb‘) as handle:
pickle.dump(result, handle)
return result
return wrapped

return wrapper
@disk_cache(‘dataset‘, ‘/home/user/dataset/‘)
def get_dataset(one_hot=True):
dataset = Dataset(‘http://example.com/dataset.bz2‘)
dataset = Tokenize(dataset)
if one_hot:
dataset = OneHotEncoding(dataset)
return dataset

属性字典。继承自内置dict类,可用属性语法访问悠已有元素。传入标准字典(键值对)。内置函数locals,返回作用域所有局部变量名值映射。

class AttrDict(dict):

def __getattr__(self, key):
if key not in self:
raise AttributeError
return self[key]

def __setattr__(self, key, value):
if key not in self:
raise AttributeError
self[key] = value

惰性属性修饰器。外部使用。访问model.optimze,数据流图创建新计算路径。调用model.prediction,创建新权值和偏置。定义只计算一次属性。结果保存到带有某些前缀的函数调用。惰性属性,TensorFlow模型结构化、分类。

import functools

def lazy_property(function):
attribute = ‘_lazy_‘ + function.__name__

@property
@functools.wraps(function)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return wrapper

class Model:

def __init__(self, data, target):
self.data = data
self.target = target
self.prediction
self.optimize
self.error

@lazy_property
def prediction(self):
data_size = int(self.data.get_shape()[1])
target_size = int(self.target.get_shape()[1])
weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
incoming = tf.matmul(self.data, weight) + bias
return tf.nn.softmax(incoming)

@lazy_property
def optimize(self):
cross_entropy = -tf.reduce_sum(self.target, tf.log(self.prediction))
optimizer = tf.train.RMSPropOptimizer(0.03)
return optimizer.minimize(cross_entropy)

@lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))

覆盖数据流图修饰器。未明确指定使用期他数据流图,TensorFlow使用默认。Jupyter Notebook,解释器状态在不同一单元执行期间保持。初始默认数据流图始终存在。执行再次定义数据流图运算单元,添加到已存在数据流图。根据菜单选项重新启动kernel,再次运行所有单元。
创建定制数据流图,设置默认。所有运算添加到该数据流图,再次运行单元,创建新数据流图。旧数据流图自动清理。
修饰器中创建数据流图,修饰主函数。主函数定义完整数据流图,定义占位符,调用函数创建模型。

import functools
import tensorflow as tf

def overwrite_graph(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
with tf.Graph().as_default():
return function(*args, **kwargs)
return wrapper
@overwrite_graph
def main():
data = tf.placeholder(...)
target = tf.placeholder(...)
model = Model()

main()

API文档,编写代码时参考:
https://www.tensorflow.org/versions/master/api_docs/index.html
Github库,跟踪TensorFlow最新功能特性,阅读拉拽请求(pull request)、问题(issues)、发行记录(release note):
https://github.com/tensorflow/tensorflow
分布式 TensorFlow:
https://www.tensorflow.org/versions/master/how_tos/distributed/index.html
构建新TensorFlow功能:
https://www.tensorflow.org/master/how_tos/adding_an_op/index.html
邮件列表:
https://groups.google.com/a/tensorflow.org/d/forum/discuss
StackOverflow:
http://stackoverflow.com/questions/tagged/tensorflow
代码:
https://github.com/backstopmedia/tensorflowbook

参考资料:
《面向机器智能的TensorFlow实践》

欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

时间: 2024-11-08 19:37:52

学习笔记TF023:下载、缓存、属性字典、惰性属性、覆盖数据流图、资源的相关文章

Swift学习笔记四:数组和字典

最近一个月都在专心做unity3d的斗地主游戏,从早到晚,最后总算是搞出来了,其中的心酸只有自己知道.最近才有功夫闲下来,还是学习学习之前的老本行--asp.net,现在用.net做项目流行MVC,而不是之前的三层,既然技术在更新,只能不断学习,以适应新的技术潮流! 创建MVC工程 1.打开Visual studio2012,新建MVC4工程 2.选择工程属性,创建MVC工程 3.生成工程的目录 App_Start:启动文件的配置信息,包括很重要的RouteConfig路由注册信息 Conten

mybatis学习笔记(13)-查询缓存之二级缓存

mybatis学习笔记(13)-查询缓存之二级缓存 mybatis学习笔记13-查询缓存之二级缓存 二级缓存原理 开启二级缓存 调用pojo类实现序列化接口 测试方法 useCache配置 刷新缓存就是清空缓存 应用场景和局限性 本文主要讲mybatis的二级缓存,二级缓存是mapper级别的缓存,多个SqlSession去操作同一个Mapper的sql语句,多个SqlSession可以共用二级缓存,二级缓存是跨SqlSession的. 二级缓存原理 首先开启mybatis的二级缓存. sqlS

mybatis学习笔记(14)-查询缓存之中的一个级缓存

mybatis学习笔记(14)-查询缓存之中的一个级缓存 mybatis学习笔记14-查询缓存之中的一个级缓存 查询缓存 一级缓存 一级缓存工作原理 一级缓存測试 一级缓存应用 本文主要讲mybatis的一级缓存.一级缓存是SqlSession级别的缓存. 查询缓存 mybatis提供查询缓存.用于减轻数据压力,提高数据库性能. mybaits提供一级缓存,和二级缓存. 一级缓存是SqlSession级别的缓存.在操作数据库时须要构造sqlSession对象,在对象中有一个数据结构(HashMa

【Cocos2D-X 学习笔记】Node父类的方法和属性

Node方法: 1.创建节点 Node *childNode=Node::create(); 该方法多为Node的子类调用create()静态方法进行创建实例 2.增加新的子节点:node->addChild(childNode,1,Tag); //1是指Z轴的索引,简单讲表示层号,这里addChild并不是个静态方法,因此需要进行指针调用,另外根据多态性(函数重载),其形参还可以是 addChild(childNode,int zOrder)  或者addChild(childNode); 3

python学习笔记(五)之字典2

python学习笔记(五)之字典2编程实战中经常用到实例1:copy >> ad = {"name":"wtf","hig":"180"}>> bd = ad>> bd{'name': 'wtf', 'hig': '180'}>> id (ad)4539954352>> id (bd)4539954352说明:一个对象贴上两个标签,使用赋值,实现了所谓的"假

Dubbo -- 系统学习 笔记 -- 示例 -- 结果缓存

Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 结果缓存 结果缓存,用于加速热门数据的访问速度,Dubbo提供声明式缓存,以减少用户加缓存的工作量. 2.1.0以上版本支持 lru 基于最近最少使用原则删除多余缓存,保持最热的数据被缓存. threadlocal 当前线程缓存,比如一个页面渲染,用到很多portal,每个portal都要去查用户信息,通过线程缓存,可以减少这种多余访问. jcache 与JSR107集成,可以桥

[html5] 学习笔记-表单新增的元素与属性(续)

本节主要讲解表单新增元素的controls属性.placeholder属性.List属性.Autocomplete属性.Pattern属性.SelectionDirection属性.Indeterminate属性.Image提交按钮的宽高属性. 1.controls属性 在html5中,可以在标签内部放置一个表单元素,并且通过该标签的controls属性来访问该表单元素. 1 <body> 2 <script> 3 function setValue(){ 4 var label

[原创]java WEB学习笔记41:简单标签之带属性的自定义标签

本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 ---------------------------------

HTML5学习笔记简明版(7):新增属性(2)

dirname属性 input 和 textarea 元素有了一个新元素 dirname,用于用户所设置的提交的方向性的控制(译注,即书写的方向性,ltr或rtl). <form action="addcomment.cgi" method=post> <p><label>Comment: <input type=text name="comment" dirname="comment.dir" requ