【数据结构】二叉堆

看到一篇很好的博文,来自http://blog.csdn.net/morewindows/article/details/6709644

下面是博文内容

堆排序快速排序归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。

二叉堆的定义

二叉堆是完全二叉树或者是近似完全二叉树。

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除

下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:

//  新加入i结点  其父结点为(i - 1) / 2
void MinHeapFixup(int a[], int i)
{
    int j, temp;

    temp = a[i];
    j = (i - 1) / 2;      //父结点
    while (j >= 0 && i != 0)
    {
        if (a[j] <= temp)
            break;

        a[i] = a[j];     //把较大的子结点往下移动,替换它的子结点
        i = j;
        j = (i - 1) / 2;
    }
    a[i] = temp;
}

更简短的表达为:

void MinHeapFixup(int a[], int i)
{
    for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] > a[j]; i = j, j = (i - 1) / 2)
        Swap(a[i], a[j]);
}

插入时:

//在最小堆中加入新的数据nNum
void MinHeapAddNumber(int a[], int n, int nNum)
{
    a[n] = nNum;
    MinHeapFixup(a, n);
}

堆的删除

按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:

//  从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
void MinHeapFixdown(int a[], int i, int n)
{
    int j, temp;

    temp = a[i];
    j = 2 * i + 1;
    while (j < n)
    {
        if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的
            j++;

        if (a[j] >= temp)
            break;

        a[i] = a[j];     //把较小的子结点往上移动,替换它的父结点
        i = j;
        j = 2 * i + 1;
    }
    a[i] = temp;
}
//在最小堆中删除数
void MinHeapDeleteNumber(int a[], int n)
{
    Swap(a[0], a[n - 1]);
    MinHeapFixdown(a, 0, n - 1);
}

堆化数组

有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:

//建立最小堆
void MakeMinHeap(int a[], int n)
{
    for (int i = n / 2 - 1; i >= 0; i--)
        MinHeapFixdown(a, i, n);
}

至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。

堆排序

首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。

由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序

void MinheapsortTodescendarray(int a[], int n)
{
    for (int i = n - 1; i >= 1; i--)
    {
        Swap(a[i], a[0]);
        MinHeapFixdown(a, 0, i);
    }
}

注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。

注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。

时间: 2024-10-11 22:18:24

【数据结构】二叉堆的相关文章

POJ 2010 - Moo University - Financial Aid 初探数据结构 二叉堆

考虑到数据结构短板严重,从计算几何换换口味= = 二叉堆 简介 堆总保持每个节点小于(大于)父亲节点.这样的堆被称作大根堆(小根堆). 顾名思义,大根堆的数根是堆内的最大元素. 堆的意义在于能快速O(1)找到最大/最小值,并能持续维护. 复杂度 push() = O(logn); pop() = O(logn); BinaryHeap() = O(nlogn); 实现 数组下标从1开始的情况下,有 Parent(i) = i >> 1 LChild(i) = i << 1 RChi

浅析基础数据结构-二叉堆

如题,二叉堆是一种基础数据结构 事实上支持的操作也是挺有限的(相对于其他数据结构而言),也就插入,查询,删除这一类 对了这篇文章中讲到的堆都是二叉堆,而不是斜堆,左偏树,斐波那契堆什么的 我都不会啊 一.堆的性质 1.堆是一颗完全二叉树 2.堆的顶端一定是“最大”,最小”的,但是要注意一个点,这里的大和小并不是传统意义下的大和小,它是相对于优先级而言的,当然你也可以把优先级定为传统意义下的大小,但一定要牢记这一点,初学者容易把堆的“大小”直接定义为传统意义下的大小,某些题就不是按数字的大小为优先

基本数据结构——二叉堆

迅速补档,为A*做一下铺垫… 概念定义 二叉堆就是一个支持插入.删除.查询最值的数据结构.他其实是一棵完全二叉树.那么堆一般分为大根堆和小根堆 大根堆 树中的任意一个节点的权值都小于或者等于其父节点的权值,则称该二叉树满足大根堆性质. 小根堆 树中的任意一个节点的权值都大于或者等于其父节点的权值,则称该二叉树满足小根堆性质. 习惯用法 一般习惯把堆用数组保存.才用父子二倍的编号方式.即:对于某一个节点x,其左儿子节点为2*x,右儿子节点为x*2+1 支持功能及代码实现 Insert插入 向二叉堆

数据结构--二叉堆与堆排序

二叉堆的概念 二叉堆,BinaryHeap,是二叉树中的常见的一种结构.通常以最大堆和最小堆的形式呈现.最大堆指的是父节点大于等于孩子节点的value值,也就是说对于最大堆而言,根元素是二叉堆最大的元素.最小堆的概念是与最大堆的概念是相似的.下图是最大堆的示意图: 二叉堆和排序之间的联系 二叉堆最显著的特征就是根元素是二叉树元素间最大的或者最小的.因此每次将二叉树最大或者最小的元素取出来,同时保证每次进行这样的操作后,剩下的元素依然可以保持二叉堆的性质,这样迭代这个过程,就可以完成排序的目的.

数据结构 二叉堆 &amp; 堆排序

二叉堆,是一个满二叉树,满足堆的性质.即父节点大于等于子节点(max heap)或者是父节点小于等于子节点(min heap).二叉堆的如上性质常用于优先队列(priority queue)或是用于堆排序. 由于max heap 与min heap类似,下文只针对min heap进行讨论和实现. 如上图,是根据字母的ASCII码建立的最小堆. 我们用数组对满二叉树采用宽度优先遍历存储堆结构,如下图所示: 从数组下标1开始存储堆,这样的处理方式可以得到如下性质: 1.堆中的每个父节点k,他的两个子

算法—二叉堆

实现栈或是队列与实现优先队列的最大不同在于对性能的要求.对于栈和队列,我们的实现能够在常数时间内完成所有操作:而对于优先队列,插入元素和删除最大元素这两个操作之一在最坏情况下需要线性时间来完成.我们接下来要讨论的基于数据结构堆的实现能够保证这两种操作都能更快地执行. 1.堆的定义 数据结构二叉堆能够很好地实现优先队列的基本操作.在二叉堆的数组中,每个元素都要保证大于等于另两个特定位置的元素.相应地,这些位置的元素又至少要大于等于数组中的另两个元素,以此类推.如果我们将所有元素画成一棵二叉树,将每

D&amp;F学数据结构系列——二叉堆

二叉堆(binary heap) 二叉堆数据结构是一种数组对象,它可以被视为一棵完全二叉树.同二叉查找树一样,堆也有两个性质,即结构性和堆序性.对于数组中任意位置i上的元素,其左儿子在位置2i上,右儿子在左儿子后的单元2i+1中,它的父亲在[i/2](向下取整)中. 因此,一个数据结构将由一个数组.一个代表最大值的整数.以及当前的堆的大小组成.一个典型的优先队列(priority queue)如下: 1 #ifndef _BinHeap_H 2 struct HeapStruct; 3 type

优先队列 - 数据结构 (二叉堆)

优先队列包括二叉堆.d-堆.左式堆.斜堆.二项队列等 1.二叉堆 堆是一棵被完全填满的二叉树,有可能例外的是在底层,底层上的元素从左到右填入.这样的树称为完全二叉树. 堆序的性质:在一个堆中,对于每一个节点X,X的父亲的关键字小于(或等于)X中的关键字,根节点除外(它没有父节点).完全二叉树可以用数组实现. //关于二叉堆的头文件定义 如果要插入的元素是新的最小值,那么它将一直被推向堆顶.这样在某一个时刻,i将是1,我们就需要另Insert函数令程序跳出while循环,这个值必须保证小于或者至少

《数据结构与算法分析:C语言描述》复习——第五章“堆”——二叉堆

2014.06.15 22:14 简介: 堆是一种非常实用的数据结构,其中以二叉堆最为常用.二叉堆可以看作一棵完全二叉树,每个节点的键值都大于(小于)其子节点,但左右孩子之间不需要有序.我们关心的通常只有堆顶的元素,而整个堆则被封装起来,保存在一个数组中. 图示: 下图是一个最大堆: 实现: 优先队列是STL中最常用的工具之一,许多算法的优化都要利用堆,使用的工具就是优先队列.STL中的优先队列通过仿函数来定义比较算法,此处我偷懒用了“<”运算符.关于使用仿函数的好处,我之后如果有时间深入学习S