【OpenJudge3531】【背包DP】【膜法交配律】判断整除

判断整除

总时间限制: 1000ms 内存限制: 65536kB

【描述】

一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。

输入输入的第一行包含两个数:N(2 < N < 10000)和k(2 < k< 100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。输出如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)

【样例输入】

3 2
1 2 4

【样例输出】

NO

【Solution】

  首先,膜法交配律,其实就是模法分配律,即(a+b+c)%k=(a%k+b%k+c%k)%k。所以预处理输入数据全部模k。

  dp[i][j]表示到第i个数模k是否有可能等于j。转移方程为dp[i+1][(j+data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1) , dp[i+1][(j-data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1)。

  AC代码:

 1 #include <cstdio>
 2 int N,K;
 3 int data[100010];
 4 int dp[10010][210];
 5 int main(){
 6     scanf("%d%d",&N,&K); for(int i=1;i<=N;++i) scanf("%d",&data[i]);
 7     data[1]%=K; dp[2][100+data[1]]=dp[2][100-data[1]]=1;
 8     for(int i=2;i<=N;++i){
 9         data[i]%=K;
10         for(int j=0;j<=K+100;++j)
11             if(dp[i][j]){
12                 dp[i+1][(j+data[i]-100)%K+100]=1;
13                 dp[i+1][(j-data[i]-100)%K+100]|=dp[i][j];
14             }
15     }
16     if(dp[N+1][100]) printf("YES");
17     else printf("NO");
18     return 0;
19 }
时间: 2024-12-27 19:44:12

【OpenJudge3531】【背包DP】【膜法交配律】判断整除的相关文章

[BZOJ 1025] 游戏 置换群 背包DP

题意 对于一个 $n$ 阶置换群 $A$ , 它的循环节大小分别为 $a_1, a_2, ..., a_m$ , 则有 $\sum_{i = 1} ^ m a_i = n$ . 定义 $f(A)$ 为它的所有循环节的最小公倍数, 即 $f(A) = [a_1, a_2, ..., a_m]$ . 求在所有 $n$ 阶置换群中, $f(A)$ 有多少种取值. $n \le 1000$ . 分析 判断 $K$ 可不可取. $K = \prod_{i = 1} ^ r {s_r} ^ {t_r}$ 可

HDU 5616 Jam&#39;s balance 背包DP

Jam's balance Problem Description Jim has a balance and N weights. (1≤N≤20)The balance can only tell whether things on different side are the same weight.Weights can be put on left side or right side arbitrarily.Please tell whether the balance can me

POJ1787——背包DP(特定状态+回溯)——Charlie&#39;s Change

Description Charlie is a driver of Advanced Cargo Movement, Ltd. Charlie drives a lot and so he often buys coffee at coffee vending machines at motorests. Charlie hates change. That is basically the setup of your next task. Your program will be given

【bzoj5018】[Snoi2017]英雄联盟 背包dp

题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄,因此,他也只准备给这N个英雄买皮肤,并且决定,以后只玩有皮肤的英雄.这N个英雄中,第i个英雄有Ki款皮肤,价格是每款CiQ币(同一个英雄的皮肤价格相同).为了让自己看起来高大上一些,小皮球决定给同学们展示一下自己的皮肤,展示的思路是这样的:对于有皮肤的每一个英雄,随便选一个皮肤给同学看.比如,小皮球共有5个英雄,

算法复习——背包dp

1.01背包 二维递推式子: 代码: for (i=1;i<=n;i++) for (x=m;x>=1;x--) if (x>=w[i]) f[i][x]=max(f[i-1][x-w[i]]+c[i],f[i-1][x]); else f[i][x]=f[i-1][x]; printf("%d",f[n][m]); // f(n,m)为最优解 return 0; 然而有时候,由于容量或者物品数过多可能导致用二维数组可能超空间,此时可以考虑一维的优化 用f[i]表示当

【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了保证团队的和谐,JYY需要保证,如果招募了候选人i,那么候选人Ri"也一定需要在团队中.当然了,JYY自己总是在团队里的.每一个候选人都有一个战斗值Pi",也有一个招募费用Si".JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队.也就是,这K个被JYY选择的候

【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choose 1,2,3,...,n}$ 构成一个置换群,求置换后不同构的序列个数模 $p$ . $0\le Sr,Sb,Sg\le 20,0\le m\le 60,m+1\le p\le 100$ ,$p$ 是质数. 输入 第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<

[luogu3767]膜法

[luogu3767]膜法 luogu 神仙题 线段树分治+带权并查集 把每个操作看成点 首先这个操作的结构是一棵树 你发现每个点的对它的子树产生影响 我们可以想到用dfn序把它转成一段区间用线段树分治来做 但是还有删除操作,相当于在一个大区间里面挖掉几个小区间 可以对每个操作开一个vector记录区间搞一搞 然后带权并查集是模5意义下的,可以认为给你的操作相当于从u连向v的一条权值为1或2的边 当u,v在同一个集合时,判断是否满足条件,否则就连边 #define pb push_back #d

背包DP整理

01背包例题: 题目:传送门 /*给你n种不同的物品,每个物品有自己的体积w[i]和价值v[i],如果每个物品只能拿一次,给你容量为m的背包,怎样才能获取最大价值:主线:使容量为m的背包装入的物品价值最大:dp[j] 记录当容量为j时的可行取法的最大价值状态转移方程:dp[j]=max(  dp[j],  dp[j-w[i]] +v[i]]  );  */ 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int maxn=1e3