时间: 2024-10-25 21:42:24
概率论的一些总结
概率论的一些总结的相关文章
【概率论与数理统计】小结2 - 随机变量概述
注:对随机变量及其取值规律的研究是概率论的核心内容.在上一个小结中,总结了随机变量的概念以及随机变量与事件的联系.这个小结会更加深入的讨论随机变量. 随机变量与事件 随机变量的本质是一种函数(映射关系),在古典概率模型中,“事件和事件的概率”是核心概念:但是在现代概率论中,“随机变量及其取值规律”是核心概念. 随机变量与事件的联系与区别 小结1中对这两个概念的联系进行了非常详细的描述.随机变量实际上只是事件的另一种表达方式,这种表达方式更加形式化和符号化,也更加便于理解以及进行逻辑运算.不同的事
【概率论与数理统计】小结1 - 基本概念
注:其实从中学就开始学习统计学了,最早的写"正"字唱票(相当于寻找众数),就是一种统计分析的过程.还有画直方图,求平均值,找中位数等.自己在学校里并没有完整系统的学习过概率论和数理统计,直到在工作中用到,才从最初的印象中,逐渐把这门学科与整个数学区分开来.自从认识到这门学科在自己从事的工作(数据分析)中所处的重要地位,真没少花时间在这方面的学习上.从最初的p值的含义,到各种分布,假设检验,方差分析...有的概念看过很多遍,但还是没有理解透彻:有的看过,长时间不用,又忘记了.总之,这一路
七月算法--12月机器学习在线班-第一次课笔记—微积分与概率论
七月算法--12月机器学习在线班-第一次课笔记—微积分与概率论 七月算法(julyedu.com)12月机器学习在线班学习笔记 http://www.julyedu.com
概率论与数理统计总结-Fall2014
概率论部分的总结 Chapter 1: 随机事件及其概率 1 随机试验:样本点:样本空间 2 随机事件:必然事件:不可能事件:互不相容事件:对立事件 3 概率的公理化定义 4 概率的性质:有限可加性,减法公式,加法公式,及推论 5 条件概率及乘法公式 6 两个事件相互独立的定义及性质:多个事件相互独立的定义及性质 7 伯努利概率模型 8 全概率公式 9 贝叶斯公式 Chapter 2: 随机变量及其分布 1 随机变量:离散型随机变量:连续型随机变量 2 分布函数及性质 3 离散型随机变量的分布率
CS281: Advanced Machine Learning 第二节 probability theory 概率论
概率论基本概念 离散变量 概率论中的两个基本法则:加法法则和乘法法则,加法法则定义了随机变量X与条件变量Y之间的直接联系.乘法法则定义了概率学中最重要的条件概率,同时也可以叫做联合概率,因为它描述了事件X和Y同时发生的概率. 通过上面公式可以推到出条件概率公式: 进而可以得到著名的贝叶斯公式,贝叶斯公式广泛的应用于科学界,这也被称为后验概率,因为它在咱们知道了p(Y=y)这个先验概率之后才能计算出来. 如果两个随机变量x,y满足以下公式,那么说明他们是互相独立的: 如果三个随机变量x,y,z满足
跟着vamei复习概率论
最近重新看了一下概率论,感觉很多东西都遗忘了,还会陷入各种误区,赶紧的纠正回来. 概率论这块,主要内容包括: 事件.条件概率.随机变量.随机变量的分布函数.概率密度.联合分布.期望.方差.协方差. 我自己的误区总结: 1.事件和随机变量 首先要明确样本空间是所有可能发生的事件的集合,它由全部基本事件组成.而事件是基本时间的集合,是样本空间的子集,事件是固定的,或者说事件的概率是固定的(贝叶斯学派加入的先验概率先不考虑).而随机变量一个映射,是从事件到实数的映射,随机变量表达了整个样本空间,描述了
概率论学习小结(road map)
在最近学习模式识别和机器学习时经常会用到概率论的知识,索性重新复习一遍概率论的知识.学习概率论最重要的一点不是公式的记忆,而是对公式背后的含义的理解.(其实学习任何一门知识都是如此,但是相比高数等的抽象性来说,概率可能显得更"接地气") 曾经在大学时代数学中学的最差的一门课便是概率论,然而最近的学习中,在几经挣扎之后却渐渐找到了这门课的乐趣,在本科时候学习的那个小小的课本将概率论的趣味完全遮盖住了. 学习概率论首先要明白这门课的意义.概率论顾名思义是研究事件发生的可能性的学科,这里不使
概率论总结
概率论总结 概率论各章关系 首先数学的发展使得我们对于确定的现象的描述已经可以相当精确了,但是还有一部分的现象是“说不清楚的”,这种说不清楚的性质就是有一定的随机性,为了更好地描述这一性质概率由此而生,而研究概率的性质的学科概率论也应运而生.而早期的概率论用于描述的事情很是简单,比如说掷硬币的概率,抽彩的概率所以早期的概率称之为“古典概率”,是基于这样两个事实的:1.基本事件是等可能发生的2.组成全体的基本事件是有限的.而后随着对于随机现象的进一步的深入的认识我们发现很多的事情的基本事件是无法穷
概率论快速学习01:计数
2014-05-15 22:02 by Jeff Li 前言 系列文章:[传送门] 马上快要期末考试了,为了学点什么.就准备这系列的博客,记录复习的成果. 正文-计数 概率 概率论研究随机事件.它源于赌徒的研究.即使是今天,概率论也常用于赌博.随机事件的结果是否只凭运气呢?高明的赌徒发现了赌博中的规律.尽管我无法预知事件的具体结果,但我可以了解每种结果出现的可能性.这是概率论的核心. "概率"到底是什么?这在数学上还有争议."频率派"认为概率是重复尝试多次,某种结
[补档计划] 概率论
4.1 事件与概率 在一个黑箱中, 放着 3 个红球和 1 个白球. 我们从箱中取出一个球, 再放回去, 反复进行若干次. 每一次的结果是不确定的, 但总体上拿到红球的次数与拿到白球的次数接近 3 : 1 . 我们发现, 这类现象很常见, 那么我们就要尝试把这类现象的特点进行概括, 命名, 然后研究它的性质, 进而应用它. 概括一下这种现象: 在个别实验中其结果呈现出不确定性, 而在大量重复实验中其结果又具有统计规律性. 为了简便地称呼这种现象, 我们要给它起名字, 称之为 "随机现象"