CF839 C 树形DP 期望

给一颗树,求从根出发路径长度的期望是多少。

树形DP 要想清楚期望的计算

/** @Date    : 2017-08-12 23:09:41
  * @FileName: C.cpp
  * @Platform: Windows
  * @Author  : Lweleth ([email protected])
  * @Link    : https://github.com/
  * @Version : $Id$
  */
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-6;

vector<int>edg[N];
int vis[N];
double f[N];
double dfs(int x, int pre)
{
	int flag = 0;
	for(auto i: edg[x])
	{
		if(i == pre)
			continue;
		flag++;
		dfs(i, x);
		f[x] += f[i];
	}
	if(flag)
		f[x] = 1.0*f[x]/flag + 1;
}

int main()
{
	int n;
	while(cin >> n)
	{
		MMF(vis);
		for(int i = 0; i <= n; i++)
			edg[i].clear();
		for(int i = 0; i < n - 1; i++)
		{
			int x, y;
			scanf("%d%d", &x, &y);
			edg[x].PB(y);
			edg[y].PB(x);
		}
		dfs(1, -1);
		//cout << ans << " "<< cnt << endl;
		//printf("%.10lf\n", (1.0000000*ans/cnt));
		printf("%.10lf\n", f[1]);
	}

    return 0;
}
时间: 2024-12-19 12:16:08

CF839 C 树形DP 期望的相关文章

Codeforces 123E Maze(树形DP+期望)

[题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从起点到达终点的期望. [题解] 首先对于期望计算有X(x,y)=X(x)*X(y),所以对于每次dfs寻路只要求出其起点到终点的期望步数,乘上起点的概率和终点的概率即可.对于一个固定起点和终点的dfs寻路,我们可以发现如果一个点在必要路径上,那么这条路被走过的期望一定为1,如果不在必要路线上,那么走

BZOJ 2878([Noi2012]迷失游乐园-树形DP+环加外向树+期望DP+vector的erase)

2878: [Noi2012]迷失游乐园 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 319  Solved: 223 [Submit][Status] Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m只可能等于n或者n-1).小Z现在所在的大门也正好是

BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )

一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&

UvaLive 6534 Join two kingdoms 树形DP+二分

链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4545 题意:两个国家A,B,分别有N座城市和Q座城市(1 ≤ N, Q ≤ 4 × 10^4),每个国家里的城市都是树形结构,每条边的权值都是1.现在要随机从两个国家中各选择一个城市来将两个国家连接起来,问连接起来的大国家里面的最长路的期望是多少. 思路:首先用树形DP

bzoj 3566: [SHOI2014]概率充电器 树形DP

首先普及一个概率公式 P(A+B)=P(A)+P(B)-P(AB) 题意:一些充电元件和导线构成一棵树,充电元件是否能充电有2种情况, 1.它自己有qi%的概率充电 2.与它相邻的元件通过导线给它充电(导线有p%的概率导通) 求最终充了电的元件的期望 题解:首先可以将元件能否充电分成3种情况考虑, 1.它自己给自己充好了电 2.它的儿子方向给它传送了电 3.它的父亲方向给它传送了电. 对于1,题目已经给出可以直接赋值, 对于2,可以通过一次树的深度遍历求得.pson[now]=pson[now]

codeforces 500D - New Year Santa Network (树形DP+组合数学)

题目地址:http://codeforces.com/contest/500/problem/D 这题是要先求出每条边出现的次数,然后除以总次数,这样期望就求出来了.先用树形DP求出每个边左右两端总共有多少个点,然后用组合数学公式就可以推出来了. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm>

[模拟赛10.12] 老大 (二分/树的直径/树形dp)

[模拟赛10.12] 老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n ? 1 条边的无向连通图),由于新建的办公室太大以至于要将奖杯要分放在两个不同的地方以便同学们丢硬币进去开光,OB 想请你帮帮他看看奖杯放在哪两个办公室使得在任意一个在劳模办公室做题的小朋友能最快地找到奖杯来开光. 一句话题意:给出一个 n 个点的树,在两个合适且不同的点放上奖杯,使得每个点到最近的奖杯距离最大值最小. 输入

HDU-2196 Computer (树形DP)

最近在看树形DP,这题应该是树形DP的经典题了,写完以后还是有点感觉的.之后看了discuss可以用树分治来做,以后再试一试. 题目大意 找到带权树上离每个点的最远点.︿( ̄︶ ̄)︿ 题解: 对于每一个点的最远点,就是以这个点为根到所有叶子节点的最长距离.但是如果确定根的话,除了根节点外,只能找到每个节点(度数-1)个子树的最大值,剩下一个子树是该节点当前的父亲节点. 所以当前节点的最远点在当前节点子树的所有叶子节点以及父亲节点的最远点上(当父亲节点的最远点不在当前节点的子树上时), 如果父亲节

UVA-01220 Party at Hali-Bula (树形DP+map)

题目链接:https://vjudge.net/problem/UVA-1220 思路: 树形DP模板题,求最大人数很简单,难点在于如何判断最大人数的名单是否有不同的情况: 解决方法是用一个数组f[manx][2]记录该节点是否出场的情况,为真时代表有多种情况; 具体讨论: 当父节点的值加上某个子节点的值时,他的f的情况也和该子节点一样: 当某个节点dp(i, 0) == dp(i, 1), 则该节点以及它的父节点也一定有多种情况(父节点必定取其中之一). Code: 1 #include<bi