SPSS数据分析—加权最小二乘法

标准的线性回归模型的假设之一是因变量方差齐性,即因变量或残差的方差不随自身预测值或其他自变量的值变化而变化。但是有时候,这种情况会被违反,称为异方差性,比如因变量为储蓄额,自变量为家庭收入,显然高收入家庭由于有更多的可支配收入,因此储蓄额差异较大,而低收入家庭由于没有过多的选择余地,因此储蓄会比较有计划和规律。

异方差性如果还是使用普通最小二乘法进行估计,那么会造成以下问题

1.估计量仍然具有无偏性,但是不具备有效性
2.变量的显著性检验失去意义
3.由于估计量变异程度增大,导致模型预测误差增大,精度降低

如何辨别是否存在异方差性呢?
1.根据专业经验判断,如上例中的储蓄额和家庭收入
2.做自变量和残差的散点图,看是否具有某种趋势
3.使用假设检验,例如Park-Gleiser检验、Goldfeld-Quandt检验、怀特检验等。

异方差的修正可以使用加权最小二乘法,基本思路是根据变异大小对相应的数据赋予不同的权重,对变异较小的赋予较大的权重,对变异较大的赋予较小的权重,使模型趋于平衡。

在SPSS中,加权最小二乘法有两个过程可以操作,一个是在线性回归中直接加入WLS权重,该功能主要是针对权重已知的情况下,如果权重未知,则需要在专门的“权重估计”过程中操作。下面我们分别来看这两个过程

1.分析—回归—线性

该数据是建立X对Y的回归,如果只有两个变量,则可以直接使用简单线性回归,但是数据中还有一个样本数n,如果直接使用简单线性回归,默认的最小二乘估计法则认为样本数并不影响结果,这显然不太合理,样本量大的变异和样本量小的变异肯定不一样,因此需要使用加权最小二乘法,将样本数作为权重,为了对比结果,我们分别使用两种方法进行拟合


2.分析—回归—权重估计

上面的例子中,我们已经知道了样本量大小代表权重大小,说明权重已经已知了,但是有时候权重大小并不十分明确,需要在拟合时逐步确定,因此我们采用WLS法的另一个过程,该过程首先要确定权重变量,权重变量也是待分析变量中其中一个,需要从专业角度加以认定,在本例中,我们仍以n作为权重变量。

时间: 2024-10-12 17:19:00

SPSS数据分析—加权最小二乘法的相关文章

SPSS数据分析—最小一乘法

线性回归最常用的是以最小二乘法作为拟合方法,但是该方法比较容易受到强影响点的影响,因此我们在拟合线性回归模型时,也将强影响点作为要考虑的条件.对于强影响点,在无法更正或删除的情况下,需要改用更稳健的拟合方法,最小一乘法就是解决此类问题的方法. 最小二乘法由于采用的是残差平方和,而强影响点的残差通常会比较大,在平方之后会更大,而最小一乘法不使用平方和而采用绝对值之和,因此对于强影响点的残差来说,其影响会小很多. 我们通过一个例子来比较当强影响点出现时,最小二乘法和最小一乘法的拟合效果,在SPSS中

加权最小二乘法

本文加权最小二乘法为研究生阶段首次做的算法推导和实现的尝试,很简单,但是当看到自己做的结果的时候还是很开心滴

快速掌握SPSS数据分析

SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是数据

SPSS数据分析—两阶段最小二乘法

传统线性模型的假设之一是因变量之间相互独立,并且如果自变量之间不独立,会产生共线性,对于模型的精度也是会有影响的.虽然完全独立的两个变量是不存在的,但是我们在分析中也可以使用一些手段尽量减小这些问题产生的影响,例如采用随机抽样减小因变量间的相关性,使其满足假设:采用岭回归.逐步回归.主成分回归等解决共线性的问题.以上解决方法做都会损失数据信息,而且似乎都是采取一种回避问题的态度而非解决问题,当碰到更复杂的情况例如因变量和自变量相互影响时,单靠回避是无法得到正确的分析结果的,那么有没有更好的直接解

SPSS数据分析—对应分析

卡方检验只能对两个分类变量之间是否存在联系进行检验,如果分类变量有多个水平的话,则无法衡量每个水平间的联系.对此,虽然可以使用逻辑回归进行建模,但是如果分类变量的水平非常多,就需要分别设定哑变量,这样对于操作和解释都非常繁琐.而对应分析则是专门解决上述问题的方法,它特别擅长对两个分类变量的多个水平之间的对应性进行分析.常用于市场细分.产品定位.品牌形象及满意度研究. 对应分析最大的特点是通过直观的图形方式,展现分类变量不同水平之间的联系,水平越多,效果越好. 对应分析是一种多元统计分析方法,由于

SPSS数据分析—非线性回归

线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析. SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方法,前者是通过变量转换,将曲线线性化,再使用线性回归进行拟合:后者则是直接按照非线性模型进行拟合. 我们按照两种方法分别拟合同一组数据,将结果进行比较. 分析—回归—曲线估计 变量转换的方法简单易行

数据分析之最小二乘法---最小二乘法,数据分析的瑞士军刀

第二个故事的主角是欧拉(Euler),拉普拉斯(Lapalace),勒让德(Legendre)和高斯(Gauss),故事发生的时间是十八世纪中到十九世纪初.十七.十八世纪是科学发展的黄金年代,微积分的发展和牛顿万有引力定律的建立,直接的推动了天文学和测地学的迅猛发展.当时的大科学家们都在考虑许多天文学上的问题.几个典型的问题如下: 土星和木星是太阳系中的大行星,由于相互吸引对各自的运动轨道产生了影响,许多大数学家,包括欧拉和拉普拉斯都在基于长期积累的天文观测数据计算土星和木星的运行轨道. 勒让德

SPSS数据分析—多维尺度分析

在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使

SPSS数据分析—配对Logistic回归模型

Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型