【bzoj3884】 上帝与集合的正确用法

http://www.lydsy.com/JudgeOnline/problem.php?id=3884 (题目链接)

题意

  求

Solution

  解决的关键:

  当${n>φ(p)}$,有$${a^n≡a^{n\%φ(p)+φ(p)}~(mod~p)}$$

  然后递归log(p)次就会出解:http://blog.csdn.net/skywalkert/article/details/43955611

细节

代码

// bzoj3884
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;

const int maxn=10000010;
int phi[maxn],vis[maxn],p[maxn];

void calphi() {
	phi[1]=1;
	for (int i=2;i<maxn;i++) {
		if (!vis[i]) {p[++p[0]]=i;phi[i]=i-1;}
		for (int j=1;j<=p[0];j++) {
			if (p[j]*i>maxn) break;
			vis[p[j]*i]=1;
			if (i%p[j]==0) {phi[p[j]*i]=phi[i]*p[j];break;}
			else phi[p[j]*i]=phi[p[j]]*phi[i];
		}
	}
}
int power(int a,int b,int c) {
	int res=1;
	while (b) {
		if (b&1) res=(LL)res*a%c;
		b>>=1;a=(LL)a*a%c;
	}
	return res;
}
int solve(int p) {
	if (p==1) return 0;
	int res=solve(phi[p])+phi[p];
	return power(2,res,p);
}
int main() {
	calphi();
	int T,P;scanf("%d",&T);
	while (T--) {
		scanf("%d",&P);
		printf("%d\n",solve(P));
	}
    return 0;
}

  

时间: 2025-01-08 11:02:36

【bzoj3884】 上帝与集合的正确用法的相关文章

欧拉函数 BZOJ3884 上帝与集合的正确用法

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1843  Solved: 862[Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容易

BZOJ3884: 上帝与集合的正确用法

Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元

bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert/article/details/43955611 注:知道欧拉公式是远远不够的,还要知道欧拉降幂公式,因为当指数很大的时候需要用 然后欧拉降幂公式不要求A,C互质,但是B必须大于等于C的欧拉函数 吐槽:感觉记忆化搜索影响不大啊,当然肯定是因为太水了 这样复杂度是O(T*sqrt(p)*logp)

bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio> using namespace std; int get_phi(int p) { int phi=p; int m=sqrt(p); for(int i=2;i<=m;++i) if(p%i==0) { phi=phi/i*(i-1); while(p%i==0) p/=i; } if(p&

【BZOJ3884】上帝与集合的正确用法 欧拉定理

[BZOJ3884]上帝与集合的正确用法 Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ

BZOJ 3884(上帝与集合的正确用法-欧拉函数递推找极限)[Template:数论 V2]

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 523  Solved: 237 [Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容

bzoj 3884 上帝与集合的正确用法 指数循环节

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现

题解 P4139 【上帝与集合的正确用法】

Solution 上帝与集合的正确用法 题目大意:求\(2^{2^{2^{2^{\ldots}}}}mod\;p\) 扩展欧拉定理 首先主角扩展欧拉定理: \[a^b \equiv \begin{cases} a^{b\;mod\;\phi(p)} & gcd(a,p)=1 \\ a^b & gcd(a,b) \neq 1,b < \phi(p) \\ a^{b\;mod\;\phi(p) + \phi(p)} & gcd(a,b)\neq1,b \geq \phi(p)\e

P4139 上帝与集合的正确用法

P4139 上帝与集合的正确用法 求: \[2^{2^{2^\cdots}}\bmod p \] 多测,\(p\le 10^7,T\le 1000\) 扩展欧拉定理基础题,话说昨天晚上证那个定理证了一晚上还没完全弄明白... 众所周知,那个公式是: \[a^n\equiv a^{n\bmod \varphi(p)+\varphi(p)}\pmod p \] 然后带到这个题的式子里 \[2^{2^{2^\cdots}}\equiv 2^{2^{2^\cdots}\bmod \varphi(p)+\

[BZOJ 3884]上帝与集合的正确用法(扩展欧拉定理)

Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元