POJ 1159 - Palindrome (LCS, 滚动数组)

Palindrome

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 55018   Accepted: 19024

Description

A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

Input

Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from ‘A‘ to ‘Z‘, lowercase letters from ‘a‘ to ‘z‘ and digits from ‘0‘ to ‘9‘. Uppercase and lowercase letters are to be considered distinct.

Output

Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

Sample Input

5
Ab3bd

Sample Output

2

【题意】 给你一个长度为n的字符串,问最少再添多少字符能组成一个回文串;【分析】原字符串:Ab3bd翻转后串:db3ba二者有重复子串b3b,若想构成回文串,必须要再添加除重复子串外的其他字符。如:Adb3bdA

下面的问题就是求原字符串与翻转后串的最长公共子串,即LCS问题;

【LCS问题】标记s1,s2字符位置变量i,j,令dp[i][j]为字符串s1[1~i],s2[1~j]的最长公共子串的长度;可知状态转移方程如下:dp[i][j] = s1[i] == s2[j] ? dp[i-1][j-1] : max(dp[i-1][j], dp[i][j-1]);

【注意】对于本题,n的范围是[3,5000],若直接开5000*5000的二维数组会内存超限(当然听说用short int会AC飘过);

【滚动数组】滚动数组的作用在于优化空间。主要应用在递推或动态规划中(如01背包问题)。因为DP题目是一个自底向上的扩展过程,我们常常需要用到的是连续的解,前面的解往往可以舍去。所以用滚动数组优化是很有效的。利用滚动数组的话在n很大的情况下可以达到压缩存储的作用。

例如本题,dp[i][j]的值仅仅取决于dp[i-1][j-1], dp[i][j-1], dp[i-1][j];再直白地说,只需要保留下i-1时的状态,就可以求出i时的状态;所以dp完全可以只开一个2*5000的数组求解;或许有人问j为什么不能也开成2? 这很好说明,因为j是随i不断循环的,i增加一个j全部循环一次,所以i在不断变化时需要不断j全部的信息,我们完全也可以令i随j不断变化,这样仅仅改变成5000*2,其他完全一样;

【代码】

 1 /*LCS*/
 2
 3 #include<iostream>
 4 #include<cstdio>
 5 #include<cstdlib>
 6 #include<cstring>
 7 using namespace std;
 8 const int maxn = 5010;
 9 char s1[maxn], s2[maxn];
10 int n;
11 int dp[3][maxn];
12
13 void LCS()
14 {
15     memset(dp, 0, sizeof(dp));
16
17     for(int i = 1; i <= n; i++)
18     {
19         for(int j = 1; j <= n; j++)
20         {
21             //cout << s1[i] << " " << s2[j] << endl;
22             if(s1[i] == s2[j])
23                 dp[i%2][j] = dp[(i-1)%2][j-1]+1;
24             else
25                 dp[i%2][j] = max(dp[(i-1)%2][j], dp[i%2][j-1]);
26         }
27     }
28     //cout << dp[n%2][n] << endl;
29     printf("%d\n", n-dp[n%2][n]);
30
31
32 }
33
34 int main()
35 {
36     while(~scanf("%d", &n))
37     {
38         scanf("%s", s1+1);
39
40         for(int i = 0; i < n; i++)
41             s2[i+1] = s1[n-i];
42
43         LCS();
44
45     }
46     return 0;
47 }


				
时间: 2024-10-24 02:54:22

POJ 1159 - Palindrome (LCS, 滚动数组)的相关文章

poj 1159 Palindrome lcs+滚动数组

点击打开链接题目链接 Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52910   Accepted: 18248 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are

poj - 1159 - Palindrome(滚动数组dp)

题意:一个长为N的字符串( 3 <= N <= 5000),问最少插入多少个字符使其变成回文串. 题目链接:http://poj.org/problem?id=1159 -->>状态:dp[i][j]表示第i个字符到第j个字符组成的字符串变成回文串的最少插入次数. 状态转移方程: 若sz[i] == sz[j],则:dp[i][j] = dp[i + 1][j - 1]; 否则:dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1; 提交,5

poj 1159 Palindrome (LCS)

链接:poj 1159 题意:给定一个字符串,求最少添加多少个字符可使得该字符串变为回文字符串 分析:设原序列S的逆序列为S' ,最少需要补充的字母数 = 原序列S的长度 - S和S'的最长公共子串长度 原因:要求最少添加几个字符,我们可以先从原串中找到一个最长回文串,然后对于原串中不属于这个回文串的字符,在它关于回文串中心的对称位置添加一个相同字符即可.那么需要添加的字符数量即为n-最长回文串长度. 最长回文串可以看作是原串中前面和后面字符的一种匹配(每个后面的字符在前面找到一个符合位置要求的

LCS(滚动数组) POJ 1159 Palindrome

题目传送门 1 /* 2 LCS裸题:长度减去最大相同长度就是要插入的个数 3 dp数组二维都开5000的话就会超内存,这里就用到了滚动数组, 4 因为在LCS的计算中,i的变化只相差1,所以可以通过对2取余来进行滚动:) 5 */ 6 #include <cstdio> 7 #include <iostream> 8 #include <cstring> 9 #include <algorithm> 10 #include <string> 1

POJ 1159 Palindrome(lcs加滚动数组)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52350   Accepted: 18041 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

POJ 1159 Palindrome(区间DP/最长公共子序列+滚动数组)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 56150   Accepted: 19398 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

LCS POJ 1159 Palindrome

题目传送门 1 /* 2 LCS裸题:长度减去最大相同长度就是要插入的个数 3 */ 4 #include <cstdio> 5 #include <iostream> 6 #include <cstring> 7 #include <algorithm> 8 #include <string> 9 using namespace std; 10 11 const int MAXN = 5e3 + 10; 12 const int INF = 0

POJ 1159 Palindrome &amp;&amp; HDU 1159 Common Subsequence

1.先说说杭电的1159吧! 这道题是基础动规,比较简单! 就是要你求最长的公共子序列(不要优化) 动态转移方程: dp[i+1][j+1]=(a[i]=b[i])?dp[i][j]+1:max(dp[i+1][j],dp[i][j+1]) AC代码: #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; #define N 520 char a[N],b[N]; in

POJ 1159 Palindrome 题解

本题的题意理解之后,就是求最长回文子序列 longest palindrome subsequence,这里注意子序列和子串的区别. 有两种求法,一种是直接求,相当于填矩阵右上对角阵,另一种是转化为longest common subsequence的求法. 最大难点就是要求内存不能使用二维的. 故此第一种方法是有点难度的,因为需要把二维矩阵的对角线转化为一维表记录,对好下标就好了. 第二中方法会稍微容易点,效率都是一样的O(n*n). 方法1: #include <cstdio> const