【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

【BZOJ1076】[SCOI2008]奖励关

Description

  你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input

  第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。

Output

  输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample Input

1 2

1 0

2 0

Sample Output

1.500000

HINT

【数据规模】

1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。

题解:由于n很小我们想到状压,用f[l][i]表示抛出了l个宝物,已有宝物状态为i时还能得到分数的期望值。我们还是倒着推,每次枚举当前抛出的宝物,判断能否获取而进行转移。最终答案就是f[k][0]。

#include <cstdio>
#include <iostream>
using namespace std;
int n,k,r[16];
double f[110][1<<16],p[16];
int count(int x)
{
    int ret=0;
    while(x)    x-=x&-x,ret++;
    return ret;
}
int main()
{
    scanf("%d%d",&k,&n);
    int i,j,l;
    double t;
    for(i=1;i<=n;i++)
    {
        scanf("%lf",&p[i]);
        while(scanf("%d",&j))
        {
            if(j==0)    break;
            r[i]+=1<<j-1;
        }
    }
    for(l=1;l<=k;l++)
    {
        for(i=(1<<n)-1;i>=0;i--)
        {
            for(j=1;j<=n;j++)
            {
                if((i&r[j])==r[j])
                    f[l][i]+=max(f[l-1][i]/(n*1.0),(f[l-1][i|(1<<j-1)]+p[j])/(n*1.0));
                else
                    f[l][i]+=f[l-1][i]/(n*1.0);
            }
        }
    }
    printf("%.6f",f[k][0]);
    return 0;
}
时间: 2024-10-24 00:51:42

【BZOJ1076】[SCOI2008]奖励关 状压DP+期望的相关文章

bzoj1076: [SCOI2008]奖励关 状压dp

Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1( 这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi 分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提

P2473 [SCOI2008]奖励关(状压+期望dp)

题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提宝物集合Si.

bzoj1076 奖励关 状压dp 概率dp

链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1076 题意:给出n种物品,每种物品有牵制条件和价值,有k次选择机会,每次每个物品等概率出现,问平均情况下最大收益.(n<=15) 首先看到这个n的范围和限制条件就应该想到是状压. 定义数组f[i][j]为当前处在第i次抛物品时间,状态为j. 但是如果我们仅仅这样定义并正向转移就会遇到一个问题:我们是有可能从无效状态推出有效状态,进而得出错误的结论的.例如,1的限制条件为2.3.4,那么我们就

P2473 || SCOI2008 奖励关 //状压&amp;&amp;期望DP

https://www.luogu.org/problemnew/show/P2473 一句话题意:有n种宝物,捡起会有得分(可能为负),有k轮可以捡起宝物.其中有些宝物,需要另外的宝物捡起过才能捡起. 问采取最优策略的期望得分. 解:期望的最大特点在于难写的递推式和倒序DP 但这道题没那么恶心,递推式还是挺好写的(指看完题解之后可以自己写出DP式子) f[i][S]表示在第1轮到第i-1轮内宝物是否取过的状态为S,第i轮到第K轮的最大期望得分 f [ i ][ S ] 在S满足时可以取或不取

bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相

BZOJ1076: [SCOI2008]奖励关

1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1669  Solved: 921[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃).  宝物一共有n种,系统每次抛出这n种宝物的概率都相同且

CF482C Game with Strings (状压DP+期望DP)

题目大意:甲和乙玩游戏,甲给出n(n<=50)个等长的字符串(len<=20),然后甲选出其中一个字符串,乙随机询问该字符串某一位的字符(不会重复询问一个位置),求乙能确定该串是哪个字符串的询问次数的期望值 这题不看题解好难想......(感谢zhx和zhx两位大佬的题解) len很小,考虑状压DP,显然我们要状压询问,要定义两个状态,f[]和num[] 1表示询问,0表示未询问 那么,我们定义f[s]表示询问状态s距离确定一个字符串所需要的期望值. 定义tot是s状态剩余的询问的次数,那么显

[BZOJ1076][SCOI2008]奖励关解题报告|状压DP

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提宝物集合Si.只有当Si中所有

【题解】 bzoj1076: [SCOI2008]奖励关 (装压+期望dp)

题面戳我 Solution 并不会做,看了下题解大概了解了.期望这个东西好难搞啊qwq 我们定义\(dp[i][j]\)表示第\(i\)步,拿到宝物前的状态为\(j\). 正着来会有很多不合法的情况,剔除比较麻烦,我们反着来考虑,因为你想如何是合法,就是状态表示拿得物品个数小于等于步数嘛,倒着来最后答案根据我们状态定义可以知道,答案是\(dp[1][0]\)嘛,然后你想,我们每向前一次,就最多剔除一个宝物,最多剔除的就是\(K\)个,其余不合法的情况到最后不会剔除完,就不会被计入答案中 转移方程