构造数据:
> dataset = matrix(c(1,2, + 1.2,2, + 8,9, + 0.9,1.8, + 7,10, + 8.8,9.2), nrow=6, byrow=T) > dataset [,1] [,2] [1,] 1.0 2.0 [2,] 1.2 2.0 [3,] 8.0 9.0 [4,] 0.9 1.8 [5,] 7.0 10.0 [6,] 8.8 9.2
聚类:
> d = dist(dataset) > d 1 2 3 4 5 2 0.2000000 3 9.8994949 9.7590983 4 0.2236068 0.3605551 10.1118742 5 10.0000000 9.8812955 1.4142136 10.2200783 6 10.6150836 10.4690019 0.8246211 10.8245092 1.9697716 > hclust(d, method = "complete") Call: hclust(d = d, method = "complete") Cluster method : complete Distance : euclidean Number of objects: 6 > hc = hclust(d, method = "complete") > plot(hc)
分成两个簇:
> democut<-cutree(hc,k=2) > democut [1] 1 1 2 1 2 2
参考:
http://www.r-tutor.com/gpu-computing/clustering/hierarchical-cluster-analysis
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
http://ecology.msu.montana.edu/labdsv/R/labs/lab13/lab13.html
时间: 2024-10-13 12:23:48