pr_debug、dev_dbg等动态调试三

内核版本:Linux-3.14

作者:彭东林

邮箱:[email protected]

如果没有使用CONFIG_DYNAMIC_DEBUG,那么就需要定义DEBUG,那么此时pr_debug就退化为了printk。

如果定义了CONFIG_DYNAMIC_DEBUG,下面有几种方法:

参考内核文档:Documentation/dynamic-debug-howto.txt

Introduction

============

This document describes how to use the dynamic debug (dyndbg) feature.

Dynamic debug is designed to allow you to dynamically enable/disable
kernel code to obtain additional kernel information.  Currently, if
CONFIG_DYNAMIC_DEBUG is set, then all pr_debug()/dev_dbg() and
print_hex_dump_debug()/print_hex_dump_bytes() calls can be dynamically
enabled per-callsite.

If CONFIG_DYNAMIC_DEBUG is not set, print_hex_dump_debug() is just
shortcut for print_hex_dump(KERN_DEBUG).

For print_hex_dump_debug()/print_hex_dump_bytes(), format string is
its ‘prefix_str‘ argument, if it is constant string; or "hexdump"
in case ‘prefix_str‘ is build dynamically.

Dynamic debug has even more useful features:

* Simple query language allows turning on and off debugging
   statements by matching any combination of 0 or 1 of:

- source filename
   - function name
   - line number (including ranges of line numbers)
   - module name
   - format string

* Provides a debugfs control file: <debugfs>/dynamic_debug/control
   which can be read to display the complete list of known debug
   statements, to help guide you

Controlling dynamic debug Behaviour

===================================

The behaviour of pr_debug()/dev_dbg()s are controlled via writing to a
control file in the ‘debugfs‘ filesystem. Thus, you must first mount
the debugfs filesystem, in order to make use of this feature.
Subsequently, we refer to the control file as:
<debugfs>/dynamic_debug/control. For example, if you want to enable
printing from source file ‘svcsock.c‘, line 1603 you simply do:

   1: nullarbor:~ # echo ‘file svcsock.c line 1603 +p‘ >
   2:                 <debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail thus:

   1: nullarbor:~ # echo ‘file svcsock.c wtf 1 +p‘ >
   2:                 <debugfs>/dynamic_debug/control
   3: -bash: echo: write error: Invalid argument

Viewing Dynamic Debug Behaviour

===========================

You can view the currently configured behaviour of all the debug
statements via:

   1: nullarbor:~ # cat <debugfs>/dynamic_debug/control
   2: # filename:lineno [module]function flags format
   3: /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_rdma_cleanup =_ "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
   4: /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_rdma_init =_ "\011max_inline       : %d\012"
   5: /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_rdma_init =_ "\011sq_depth         : %d\012"
   6: /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_rdma_init =_ "\011max_requests     : %d\012"
   7: ...

You can also apply standard Unix text manipulation filters to this
data, e.g.

   1: nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control  | wc -l
   2: 62
   3:  
   4: nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
   5: 42
   6:  

The third column shows the currently enabled flags for each debug
statement callsite (see below for definitions of the flags).  The
default value, with no flags enabled, is "=_".  So you can view all
the debug statement callsites with any non-default flags:

   1: nullarbor:~ # awk ‘$3 != "=_"‘ <debugfs>/dynamic_debug/control
   2: # filename:lineno [module]function flags format
   3: /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p "svc_process: st_sendto returned %d\012"

Command Language Reference

==========================

At the lexical level, a command comprises a sequence of words separated
by spaces or tabs.  So these are all equivalent:

   1: nullarbor:~ # echo -c ‘file svcsock.c line 1603 +p‘ >
   2:                 <debugfs>/dynamic_debug/control
   3: nullarbor:~ # echo -c ‘  file   svcsock.c     line  1603 +p  ‘ >
   4:                 <debugfs>/dynamic_debug/control
   5: nullarbor:~ # echo -n ‘file svcsock.c line 1603 +p‘ >
   6:                 <debugfs>/dynamic_debug/control

Command submissions are bounded by a write() system call.
Multiple commands can be written together, separated by ‘;‘ or ‘\n‘.

   1: ~# echo "func pnpacpi_get_resources +p; func pnp_assign_mem +p" \
   2:    > <debugfs>/dynamic_debug/control

If your query set is big, you can batch them too:

   1: ~# cat query-batch-file > <debugfs>/dynamic_debug/control

A another way is to use wildcard. The match rule support ‘*‘ (matches
zero or more characters) and ‘?‘ (matches exactly one character).For
example, you can match all usb drivers:

   1: ~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control

At the syntactical level, a command comprises a sequence of match
specifications, followed by a flags change specification.

   1: command ::= match-spec* flags-spec

The match-spec‘s are used to choose a subset of the known pr_debug()
callsites to which to apply the flags-spec.  Think of them as a query
with implicit ANDs between each pair.  Note that an empty list of
match-specs will select all debug statement callsites.

A match specification comprises a keyword, which controls the
attribute of the callsite to be compared, and a value to compare
against.  Possible keywords are:

   1: match-spec ::= ‘func‘ string |
   2:            ‘file‘ string |
   3:            ‘module‘ string |
   4:            ‘format‘ string |
   5:            ‘line‘ line-range
   6:  
   7: line-range ::= lineno |
   8:            ‘-‘lineno |
   9:            lineno‘-‘ |
  10:            lineno‘-‘lineno

// Note: line-range cannot contain space, e.g.
// "1-30" is valid range but "1 - 30" is not.

lineno ::= unsigned-int

The meanings of each keyword are:

func
    The given string is compared against the function name
    of each callsite.  Example:

   1: func svc_tcp_accept

file
    The given string is compared against either the full pathname, the
    src-root relative pathname, or the basename of the source file of
    each callsite.  Examples:

   1: file svcsock.c
   2: file kernel/freezer.c
   3: file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c

module
    The given string is compared against the module name
    of each callsite.  The module name is the string as
    seen in "lsmod", i.e. without the directory or the .ko
    suffix and with ‘-‘ changed to ‘_‘.  Examples:

   1: module sunrpc
   2: module nfsd

format
    The given string is searched for in the dynamic debug format
    string.  Note that the string does not need to match the
    entire format, only some part.  Whitespace and other
    special characters can be escaped using C octal character
    escape \ooo notation, e.g. the space character is \040.
    Alternatively, the string can be enclosed in double quote
    characters (") or single quote characters (‘).
    Examples:

   1: format svcrdma:        // many of the NFS/RDMA server pr_debugs
   2: format readahead        // some pr_debugs in the readahead cache
   3: format nfsd:\040SETATTR // one way to match a format with whitespace
   4: format "nfsd: SETATTR"  // a neater way to match a format with whitespace
   5: format ‘nfsd: SETATTR‘  // yet another way to match a format with whitespace

line
    The given line number or range of line numbers is compared
    against the line number of each pr_debug() callsite.  A single
    line number matches the callsite line number exactly.  A
    range of line numbers matches any callsite between the first
    and last line number inclusive.  An empty first number means
    the first line in the file, an empty line number means the
    last number in the file.  Examples:

   1: line 1603        // exactly line 1603
   2: line 1600-1605  // the six lines from line 1600 to line 1605
   3: line -1605        // the 1605 lines from line 1 to line 1605
   4: line 1600-        // all lines from line 1600 to the end of the file

The flags specification comprises a change operation followed
by one or more flag characters.  The change operation is one
of the characters:

   1: -    remove the given flags
   2: +    add the given flags
   3: =    set the flags to the given flags

The flags are:

   1: p    enables the pr_debug() callsite.
   2: f    Include the function name in the printed message
   3: l    Include line number in the printed message
   4: m    Include module name in the printed message
   5: t    Include thread ID in messages not generated from interrupt context
   6: _    No flags are set. (Or‘d with others on input)

For print_hex_dump_debug() and print_hex_dump_bytes(), only ‘p‘ flag
have meaning, other flags ignored.

For display, the flags are preceded by ‘=‘
(mnemonic: what the flags are currently equal to).

Note the regexp ^[-+=][flmpt_]+$ matches a flags specification.
To clear all flags at once, use "=_" or "-flmpt".

Debug messages during Boot Process

==================================

To activate debug messages for core code and built-in modules during
the boot process, even before userspace and debugfs exists, use
dyndbg="QUERY", module.dyndbg="QUERY", or ddebug_query="QUERY"
(ddebug_query is obsoleted by dyndbg, and deprecated).  QUERY follows
the syntax described above, but must not exceed 1023 characters.  Your
bootloader may impose lower limits.

These dyndbg params are processed just after the ddebug tables are
processed, as part of the arch_initcall.  Thus you can enable debug
messages in all code run after this arch_initcall via this boot
parameter.

On an x86 system for example ACPI enablement is a subsys_initcall and

   1: dyndbg="file ec.c +p"

will show early Embedded Controller transactions during ACPI setup if
your machine (typically a laptop) has an Embedded Controller.
PCI (or other devices) initialization also is a hot candidate for using
this boot parameter for debugging purposes.

If foo module is not built-in, foo.dyndbg will still be processed at
boot time, without effect, but will be reprocessed when module is
loaded later.  dyndbg_query= and bare dyndbg= are only processed at
boot.

Debug Messages at Module Initialization Time

============================================

When "modprobe foo" is called, modprobe scans /proc/cmdline for
foo.params, strips "foo.", and passes them to the kernel along with
params given in modprobe args or /etc/modprob.d/*.conf files,
in the following order:

1. # parameters given via /etc/modprobe.d/*.conf

   1: options foo dyndbg=+pt
   2: options foo dyndbg # defaults to +p

2. # foo.dyndbg as given in boot args, "foo." is stripped and passed

   1: foo.dyndbg=" func bar +p; func buz +mp"

3. # args to modprobe

   1: modprobe foo dyndbg==pmf # override previous settings

These dyndbg queries are applied in order, with last having final say.
This allows boot args to override or modify those from /etc/modprobe.d
(sensible, since 1 is system wide, 2 is kernel or boot specific), and
modprobe args to override both.

In the foo.dyndbg="QUERY" form, the query must exclude "module foo".
"foo" is extracted from the param-name, and applied to each query in
"QUERY", and only 1 match-spec of each type is allowed.

The dyndbg option is a "fake" module parameter, which means:

- modules do not need to define it explicitly
- every module gets it tacitly, whether they use pr_debug or not
- it doesn‘t appear in /sys/module/$module/parameters/
  To see it, grep the control file, or inspect /proc/cmdline.

For CONFIG_DYNAMIC_DEBUG kernels, any settings given at boot-time (or
enabled by -DDEBUG flag during compilation) can be disabled later via
the sysfs interface if the debug messages are no longer needed:

   1: echo "module module_name -p" > <debugfs>/dynamic_debug/control

Examples
========

   1: // enable the message at line 1603 of file svcsock.c
   2: nullarbor:~ # echo -n ‘file svcsock.c line 1603 +p‘ >
   3:                 <debugfs>/dynamic_debug/control
   4:  
   5: // enable all the messages in file svcsock.c
   6: nullarbor:~ # echo -n ‘file svcsock.c +p‘ >
   7:                 <debugfs>/dynamic_debug/control
   8:  
   9: // enable all the messages in the NFS server module
  10: nullarbor:~ # echo -n ‘module nfsd +p‘ >
  11:                 <debugfs>/dynamic_debug/control
  12:  
  13: // enable all 12 messages in the function svc_process()
  14: nullarbor:~ # echo -n ‘func svc_process +p‘ >
  15:                 <debugfs>/dynamic_debug/control
  16:  
  17: // disable all 12 messages in the function svc_process()
  18: nullarbor:~ # echo -n ‘func svc_process -p‘ >
  19:                 <debugfs>/dynamic_debug/control
  20:  
  21: // enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
  22: nullarbor:~ # echo -n ‘format "nfsd: READ" +p‘ >
  23:                 <debugfs>/dynamic_debug/control
  24:  
  25: // enable messages in files of which the pathes include string "usb"
  26: nullarbor:~ # echo -n ‘*usb* +p‘ > <debugfs>/dynamic_debug/control
  27:  
  28: // enable all messages
  29: nullarbor:~ # echo -n ‘+p‘ > <debugfs>/dynamic_debug/control
  30:  
  31: // add module, function to all enabled messages
  32: nullarbor:~ # echo -n ‘+mf‘ > <debugfs>/dynamic_debug/control
  33:  
  34: // boot-args example, with newlines and comments for readability
  35: Kernel command line: ...
  36:   // see whats going on in dyndbg=value processing
  37:   dynamic_debug.verbose=1
  38:   // enable pr_debugs in 2 builtins, #cmt is stripped
  39:   dyndbg="module params +p #cmt ; module sys +p"
  40:   // enable pr_debugs in 2 functions in a module loaded later
  41:   pc87360.dyndbg="func pc87360_init_device +p; func pc87360_find +p"
  42:  

完。

时间: 2024-10-12 22:35:04

pr_debug、dev_dbg等动态调试三的相关文章

pr_debug、dev_dbg等动态调试一

内核版本:Linux-3.14 pr_debug: #if defined(CONFIG_DYNAMIC_DEBUG) /* dynamic_pr_debug() uses pr_fmt() internally so we don't need it here */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \

pr_debug、dev_dbg等动态调试二

内核版本:Linux-3.14 作者:彭东林 邮箱:[email protected] 下面我们简要分析 1: echo -n "file demo.c +p" > /sys/kernel/debug/dynamic_debug/control 的实现. 首先看一下dynamic_dedbg/control是如何生成的? 代码位置 lib/dynamic_debug.c 1: static int __init dynamic_debug_init_debugfs(void) 2

阿里ctf-2014 android 第三题——so动态调试及破解加固

通过做题来学习android逆向是一个比较不错的方法. 虽然有投机取巧的方法解决这题,但是对这个题目的深入研究,学习到了dex的动态调试.破解加固等技术. 要感谢各位android大牛对此题的详细介绍.我只是照着做了一遍,对有些不明确的地方自己演练了一下,并对android的so调试进行了一下简单的归纳. 从零开始进行android的so代码调试: 一.工具准备: jre--java runtime enveroment    //下面的一切工具都要这个支持 jdk--java developm

安卓动态调试七种武器之长生剑 - Smali Instrumentation

安卓动态调试七种武器之长生剑 - Smali Instrumentation 作者:蒸米@阿里聚安全 0x00 序 随着移动安全越来越火,各种调试工具也都层出不穷,但因为环境和需求的不同,并没有工具是万能的.另外工具是死的,人是活的,如果能搞懂工具的原理再结合上自身的经验,你也可以创造出属于自己的调试武器.因此,笔者将会在这一系列文章中(共7篇)分享一些自己经常用或原创的调试工具以及手段,希望能对国内移动安全的研究起到一些催化剂的作用. 0x01 长生剑 长生剑是把神奇的剑,为白玉京所配,剑名取

安卓程序动态调试方法

一.使用DDMS 1.将程序使用apktool转化为smali代码,在关键代码左右注入log代码(的smali形式,如输出寄存器v0的值),之后重新打包apk,再执行时可以从 logcat 中看到输出. 2.栈跟踪法:如,在关键代码左右插入new Exception("print trace").printStackTrace();的smali代码形式,之后重新打包签名,再次运行可以在logcat窗口中得到栈跟踪信息. 3.method profiling: 可以用ddms中的meth

Android动态方式破解apk前奏篇(Eclipse动态调试smail源码)

一.前言 今天我们开始apk破解的另外一种方式:动态代码调试破解,之前其实已经在一篇文章中说到如何破解apk了: Android中使用静态方式破解Apk  主要采用的是静态方式,步骤也很简单,首先使用apktool来反编译apk,得到smail源码,然后分析smail代码,采用代码注入技术来跟踪代码,然后找到关键方法进行修改,进而破解,同时还可以使用一些开源的hook框架,比如:Xposed和Cydia Substrate,来进行关键方法的hook.所以这里我们可以看到我们破解的第一步是使用ap

js调试系列:断点和动态调试[基础篇]

js调试系列: 断点与动态调试[基础篇] js调试系列目录: - js调试系列: 初识控制台 js调试系列: 控制台命令行API js调试系列: 源码定位与调试[基础篇] js调试系列: 断点与动态调试[基础篇] js调试系列: 调试基础与技巧 额,我说的不是张敬轩的 断点 这首歌,是调试用到的断点,进入正题吧. 昨天留的课后练习 1. 分析 votePost 函数是如何实现 推荐 的.其实我们已经看到了源码,只要读下源码即可知道他是怎么实现的了. 文本 function votePost(n,

安卓动态调试七种武器之孔雀翎 – Ida Pro

安卓动态调试七种武器之孔雀翎 – Ida Pro 作者:蒸米@阿里聚安全 0x00 序 随着移动安全越来越火,各种调试工具也都层出不穷,但因为环境和需求的不同,并没有工具是万能的.另外工具是死的,人是活的,如果能搞懂工具的原理再结合上自身的经验,你也可以创造出属于自己的调试武器.因此,笔者将会在这一系列文章中分享一些自己经常用或原创的调试工具以及手段,希望能对国内移动安全的研究起到一些催化剂的作用. 目录如下: 安卓动态调试七种武器之长生剑 - Smali Instrumentation 安卓动

安卓APP动态调试-IDA实用攻略

0x00 前言 随着智能手机的普及,移动APP已经贯穿到人们生活的各个领域.越来越多的人甚至已经对这些APP应用产生了依赖,包括手机QQ.游戏.导航地图.微博.微信.手机支付等等,尤其2015年春节期间各大厂商推出的抢红包活动,一时让移动支付应用变得异常火热. 然后移动安全问题接憧而至,主要分为移动断网络安全和客户端应用安全.目前移动APP软件保护方面还处于初级阶段,许多厂商对APP安全认识不够深入,产品未经过加密处理,使得逆向分析者能够通过逆向分析.动态调试等技术来破解APP,这样APP原本需