这是UFLDL的编程练习。具体教程参照官网。
PCA
PCA will find the priciple direction and the secodary direction in 2-dimention examples.
then
x~(i)=x(i)rot,1=uT1x(i)∈R.
is big when
x(i)rot,2=uT2x(i)
was small. so PCA drop
x(i)rot,2=uT2x(i)
approximate them with 0’s.
Whitening
白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低;(ii)所有特征具有相同的方差。
白化处理分PCA白化和ZCA白化,PCA白化保证数据各维度的方差为1,而ZCA白化保证数据各维度的方差相同。PCA白化可以用于降维也可以去相关性,而ZCA白化主要用于去相关性,且尽量使白化后的数据接近原始输入数据。
PCA白化ZCA白化都降低了特征之间相关性较低,同时使得所有特征具有相同的方差。
1. PCA白化需要保证数据各维度的方差为1,ZCA白化只需保证方差相等。
2. PCA白化可进行降维也可以去相关性,而ZCA白化主要用于去相关性另外。
3. ZCA白化相比于PCA白化使得处理后的数据更加的接近原始数据。
Regularizaion
When implementing PCA whitening or ZCA whitening in practice, sometimes some of the eigenvalues \textstyle \lambda_i will be numerically close to 0, and thus the scaling step where we divide by \sqrt{\lambda_i} would involve dividing by a value close to zero; this may cause the data to blow up (take on large values) or otherwise be numerically unstable. In practice, we therefore implement this scaling step using a small amount of regularization, and add a small constant \textstyle \epsilon to the eigenvalues before taking their square root and inverse:
xPCAwhite,i=xrot,iλi+??????√.
When x takes values around [-1,1], a value of epsilon approx 10^{-5} might be typical.
编程作业代码(建议作为参考,自己先独立完成):
%% Step 0a: Load data
% Here we provide the code to load natural image data into x.
% x will be a 144 * 10000 matrix, where the kth column x(:, k) corresponds to
% the raw image data from the kth 12x12 image patch sampled.
% You do not need to change the code below.
x = sampleIMAGESRAW();
figure(‘name‘,‘Raw images‘);
randsel = randi(size(x,2),200,1); % A random selection of samples for visualization
display_network(x(:,randsel));
%%================================================================
%% Step 0b: Zero-mean the data (by row)
% You can make use of the mean and repmat/bsxfun functions.
% -------------------- YOUR CODE HERE --------------------
avg = mean(x,1);
x = x - repmat(avg,size(x,1),1);
%%================================================================
%% Step 1a: Implement PCA to obtain xRot
% Implement PCA to obtain xRot, the matrix in which the data is expressed
% with respect to the eigenbasis of sigma, which is the matrix U.
% -------------------- YOUR CODE HERE --------------------
xRot = zeros(size(x)); % You need to compute this
U = zeros(size(x,1));
sigma = x*x‘/size(x,2);
[U,S,V] = svd(sigma);
xRot = U‘*x;
%%================================================================
%% Step 1b: Check your implementation of PCA
% The covariance matrix for the data expressed with respect to the basis U
% should be a diagonal matrix with non-zero entries only along the main
% diagonal. We will verify this here.
% Write code to compute the covariance matrix, covar.
% When visualised as an image, you should see a straight line across the
% diagonal (non-zero entries) against a blue background (zero entries).
% -------------------- YOUR CODE HERE --------------------
covar = zeros(size(x, 1)); % You need to compute this
%[covar,S,V] = svd(sigma);
covar = xRot*xRot‘/size(xRot,2) ;
% Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure(‘name‘,‘Visualisation of covariance matrix‘);
imagesc(covar);
%%================================================================
%% Step 2: Find k, the number of components to retain
% Write code to determine k, the number of components to retain in order
% to retain at least 99% of the variance.
% -------------------- YOUR CODE HERE --------------------
k = 0; % Set k accordingly
POVV = 0;
for k = 1:size(x,1)
POVV = sum(sum(S(1:k,1:k)))/sum(sum(S));
if POVV >=0.99
break
end
k
end
%%================================================================
%% Step 3: Implement PCA with dimension reduction
% Now that you have found k, you can reduce the dimension of the data by
% discarding the remaining dimensions. In this way, you can represent the
% data in k dimensions instead of the original 144, which will save you
% computational time when running learning algorithms on the reduced
% representation.
%
% Following the dimension reduction, invert the PCA transformation to produce
% the matrix xHat, the dimension-reduced data with respect to the original basis.
% Visualise the data and compare it to the raw data. You will observe that
% there is little loss due to throwing away the principal components that
% correspond to dimensions with low variation.
% -------------------- YOUR CODE HERE --------------------
xHat = zeros(size(x)); % You need to compute this
xRot = U(:,1:k)‘*x;
xHat = U(:,1:k)*xRot;
% Visualise the data, and compare it to the raw data
% You should observe that the raw and processed data are of comparable quality.
% For comparison, you may wish to generate a PCA reduced image which
% retains only 90% of the variance.
figure(‘name‘,[‘PCA processed images ‘,sprintf(‘(%d / %d dimensions)‘, k, size(x, 1)),‘‘]);
display_network(xHat(:,randsel));
figure(‘name‘,‘Raw images‘);
display_network(x(:,randsel));
%%================================================================
%% Step 4a: Implement PCA with whitening and regularisation
% Implement PCA with whitening and regularisation to produce the matrix
% xPCAWhite.
epsilon = 0.1;
xPCAWhite = zeros(size(x));
xPCAWhite = diag(1./sqrt(diag(S)+epsilon))*U‘*x;
% -------------------- YOUR CODE HERE --------------------
%%================================================================
%% Step 4b: Check your implementation of PCA whitening
% Check your implementation of PCA whitening with and without regularisation.
% PCA whitening without regularisation results a covariance matrix
% that is equal to the identity matrix. PCA whitening with regularisation
% results in a covariance matrix with diagonal entries starting close to
% 1 and gradually becoming smaller. We will verify these properties here.
% Write code to compute the covariance matrix, covar.
%
% Without regularisation (set epsilon to 0 or close to 0),
% when visualised as an image, you should see a red line across the
% diagonal (one entries) against a blue background (zero entries).
% With regularisation, you should see a red line that slowly turns
% blue across the diagonal, corresponding to the one entries slowly
% becoming smaller.
% -------------------- YOUR CODE HERE --------------------
covar = xPCAWhite*xPCAWhite‘/size(xPCAWhite,2);
% Visualise the covariance matrix. You should see a red line across the
% diagonal against a blue background.
figure(‘name‘,‘Visualisation of covariance matrix‘);
imagesc(covar);
%%================================================================
%% Step 5: Implement ZCA whitening
% Now implement ZCA whitening to produce the matrix xZCAWhite.
% Visualise the data and compare it to the raw data. You should observe
% that whitening results in, among other things, enhanced edges.
epsilon = 0.1;
xZCAWhite = zeros(size(x));
xZCAWhite = U*diag(1./sqrt(diag(S)+epsilon))*U‘*x;
% -------------------- YOUR CODE HERE --------------------
% Visualise the data, and compare it to the raw data.
% You should observe that the whitened images have enhanced edges.
figure(‘name‘,‘ZCA whitened images‘);
display_network(xZCAWhite(:,randsel));
figure(‘name‘,‘Raw images‘);
display_network(x(:,randsel));