Luck and Love
Problem Description
世界上上最远的距离不是相隔天涯海角
而是我在你面前
可你却不知道我爱你
―― 李丹妮
前段日子,枫冰叶子给Wiskey做了个征婚启事,聘礼达到500万哦,天哪,可是天文数字了啊,不知多少MM蜂拥而至,顿时万人空巷,连扫地的大妈都来凑热闹来了。―_―|||
由于人数太多,Wiskey实在忙不过来,就把统计的事情全交给了枫冰叶子,自己跑回家休息去了。这可够枫冰叶子忙的了,他要处理的有两类事情,一是得接受MM的报名,二是要帮Wiskey查找符合要求的MM中缘分最高值。
Input
本题有多个测试数据,第一个数字M,表示接下来有连续的M个操作,当M=0时处理中止。
接下来是一个操作符C。
当操作符为‘I’时,表示有一个MM报名,后面接着一个整数,H表示身高,两个浮点数,A表示活泼度,L表示缘分值。 (100<=H<=200, 0.0<=A,L<=100.0)
当操作符为‘Q’时,后面接着四个浮点数,H1,H2表示身高区间,A1,A2表示活泼度区间,输出符合身高和活泼度要求的MM中的缘分最高值。 (100<=H1,H2<=200, 0.0<=A1,A2<=100.0)
所有输入的浮点数,均只有一位小数。
Output
对于每一次询问操作,在一行里面输出缘分最高值,保留一位小数。
对查找不到的询问,输出-1。
Sample Input
8 I 160 50.5 60.0 I 165 30.0 80.5 I 166 10.0 50.0 I 170 80.5 77.5 Q 150 166 10.0 60.0 Q 166 177 10.0 50.0 I 166 40.0 99.9 Q 166 177 10.0 50.0 0
Sample Output
80.5 50.0 99.0
代码不好打啊!!!有木有。。纯粹练手速啊。。
#include <iostream> # include<cstdio> # include<cstring> using namespace std; #define N 300 #define M 3000 # define lch(x) x<<1 # define rch(x) x<<1|1 struct sonNode { int l, r, val; void getlr ( int tl, int tr ) { l = tl; r = tr; } }; struct parentNode { int l, r; sonNode son[M]; //树套树 void getlr ( int tl, int tr ) { l = tl; r = tr; } }node[N]; void sub_build ( int f, int u, int l, int r ) { node[f].son[u].getlr ( l, r ); node[f].son[u].val = -1; // 储存缘分值 if ( l == r ) return; int mid = ( l + r )>>1; sub_build ( f, lch(u), l, mid ); sub_build ( f, rch(u), mid+1, r ); } void build ( int f, int l1, int r1, int l2, int r2 ) { node[f].getlr ( l1, r1 ); sub_build ( f, 1, l2, r2 ); //子树建立(父结点,相应子结点) if ( l1 == r1 ) return; int mid = ( l1 + r1 )>>1; build ( lch(f), l1, mid, l2, r2 ); build ( rch(f), mid+1, r1, l2, r2 ); } void sub_update ( int f, int u, int pos2, int val ) { if ( u > M ) return; //结束标志 node[f].son[u].val = max ( node[f].son[u].val, val ); if ( node[f].son[u].l == pos2 && node[f].son[u].r == pos2 ) { node[f].son[u].val = max ( node[f].son[u].val, val ); return; } int mid = ( node[f].son[u].l + node[f].son[u].r )>>1; if ( pos2 <= mid ) sub_update ( f, lch(u), pos2, val ); else sub_update ( f, rch(u), pos2, val ); } //身高 活泼度 缘分值 void update ( int f, int pos1, int pos2, int val ) { if ( f > N ) return; //容易忘记,千万记住 sub_update ( f, 1, pos2, val ); //子结点更新 if ( node[f].l == node[f].r ) return; int mid = ( node[f].l + node[f].r )>>1; if ( pos1 <= mid ) update ( lch(f), pos1, pos2, val ); else update ( rch(f), pos1, pos2, val ); } int sub_query ( int f, int u, int l2, int r2 ) { if ( u > M ) return -1; if ( node[f].son[u].l == l2 && node[f].son[u].r == r2 ) return node[f].son[u].val; int mid = ( node[f].son[u].l + node[f].son[u].r )>>1; if ( r2 <= mid ) return sub_query ( f, lch(u), l2, r2 ); else if ( l2 > mid ) return sub_query ( f, rch(u), l2, r2 ); else return max( sub_query(f,lch(u),l2,mid), sub_query(f,rch(u),mid+1,r2) ); } int query ( int f, int l1, int r1, int l2, int r2 ) { if ( f > N ) return -1; //找不到,返回-1; if ( node[f].l == l1 && node[f].r == r1 ) return sub_query ( f, 1, l2, r2 ); int mid = ( node[f].l + node[f].r )>>1; if ( r1 <= mid ) return query ( lch(f), l1, r1, l2, r2 ); else if ( l1 > mid ) return query ( rch(f), l1, r1, l2, r2 ); else return max ( query(lch(f),l1,mid,l2,r2), query(rch(f),mid+1,r1,l2,r2) ); } // 总的来说 主线段树表示身高区间 副线段树表示活泼度区间 // 然后分别建树,更新,询问 ,只是注意好之间的联系就好 int main () { char ch[3]; int m, h, hl, hr, ans; double a, l, al, ar; while ( scanf("%d",&m) != EOF && m ) { memset(node,0,sizeof(node)); build ( 1, 100, 200, 0, 1000 ); //根节点,身高区间,活泼度区间 while ( m-- ) { scanf("%s",ch); if ( ch[0] == 'I' ) { scanf("%d%lf%lf", &h, &a, &l ); update ( 1, h, (int)(a*10), (int)(l*10) ); } //根节点,身高,活泼度,缘分值 else { scanf("%d%d%lf%lf", &hl, &hr, &al, &ar); if ( hl > hr ) swap ( hl, hr ); if ( al > ar ) swap ( al, ar ); ans = query ( 1, hl, hr, (int)(al*10), (int)(ar*10) ); if ( ans < 0 ) printf("-1\n"); //根节点,身高区间,活泼度区间 else printf("%.1lf\n", ans/10.0 ); } } } return 0; }
Luck and Love (二维线段树)(树套树)
时间: 2024-10-27 05:58:19