Half Wavelength Dipole Antenna

Reference :

1. wikipedia

 

The dipole antenna is the simplest and most widely used class of antenna.It consists of two identical conductive elements such as metal wires or rods, which are usually bilaterally symmetrical.Each side of the feedline to the transmitter or receiver is connected to one of the conductors.

Dipoles are resonant antennas, meaning that the elements serve as resonators, with standing waves of radio current flowing back and forth between their ends. So the length of the dipole elements is determined by the wavelength of the radio waves used. The most common form is the half-wave dipole, in which each of the two rod elements is approximately 1/4 wavelength long, so the whole antenna is a half-wavelength long. The radiation pattern of a vertical dipole is omnidirectional; it radiates equal power in allazimuthal directions perpendicular to the axis of the antenna. For a half-wave dipole the radiation is maximum, 2.15 dBi perpendicular to the antenna axis, falling monotonically with elevation angle to zero on the axis, off the ends of the antenna.

Several different variations of the dipole are also used, such as thefolded dipole, short dipole, cage dipole, bow-tie, and batwing antenna. Dipoles may be used as standalone antennas themselves, but they are also employed as feed antennas (driven elements) in many more complex antenna types, such as the Yagi antenna, parabolic antenna, reflective array, turnstile antenna, log periodic antenna, and phased array.

Dipole characteristics

 

1. Impedance

The feedpoint impedance of a dipole antenna is very sensitive to its electrical length. Therefore, a dipole will generally only perform optimally over a rather narrow bandwidth, beyond which its impedance will become a poor match for the transmitter or receiver (and transmission line). The real (resistive) and imaginary (reactive) components of that impedance, as a function of electrical length, are shown in the accompanying graph.

A true half-wave dipole is one half of the wavelength λ in length, where λ=c/f in free space. Such a dipole has a feedpoint impedance consisting of 73Ω resistance and +43Ω reactance, thus presenting a slightly inductive reactance. In order to cancel that reactance, and present a pure resistance to the feedline, the element is shortened by the factor k for a net length of:

The adjustment factor k, in order for the reactance to be cancelled, depends on the diameter of the conductor. For thin wires (diameter= 0.00001 wavelengths), k is approximately 0.98; for thick conductors (diameter= 0.008 wavelengths), k drops to about 0.94. This is because the effect of antenna length on reactance is much greater for thinner conductors. For the same reason, antennas with thicker conductors have a wider operating bandwidth over which they attain an acceptablestanding wave ratio.

Dipole antennas of lengths approximately equal to any odd multiple of λ/2 are also resonant, presenting a small reactance (which can be cancelled by a small length adjustment). However these are rarely used. One size that is more practical though is a dipole with a length of 5/4 wavelengths. Not being close to 3/2 wavelengths, this antenna‘s impedance has a large (negative) reactance and can only be used with an impedance matching network (or "antenna tuner"). It is a desirable length because such an antenna has the highest gain for any dipole which isn‘t a great deal longer.

时间: 2024-08-13 02:21:31

Half Wavelength Dipole Antenna的相关文章

dipole antenna simulation by CST

CST偶极子天线仿真,半波振子天线 一.本文使用CST仿真频率为1GHz的偶极子天线,使用2013版本.仿真的步骤为 1.选择一个CST的天线工程模板 2.设置好默认的单位 3.设置背景的材料(空气腔等) 4.建模,画出天线的结构 5.设置频率 6.设置边界条件 7.定义激励 8.远场设置 9.设置远场结果分析的模板 10.选择合适的求解器 11.分析结果 二.具体实现. 1.新建工程,依次选择Microwave&RF->Antennas--->wire--->Integral

dipole antenna simulation by HFSS

工作频点为1GHz,新建工程,添加新设计,编辑添加下面的变量 建立天线模型,即两个金属圆柱.编辑完一个振子后,另一半可以用镜像命令产生参数如下设置 ,材料为PEC 两个圆柱间建立一个矩形片,连接两个圆柱,用以馈电. 设置该矩形面的激励方式为集总端口激励.由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2?,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 ?.随后进行端口积分线的设置.此处积分线为矩形下边缘中点到矩形上边缘中点. 计算分析天线的辐射场,必须先设置辐射边界条件.本次设计中采

dipole antenna simulation by FEKO

新建变量 建立模型 设置频率 馈电设置为wire port ,Edge 选中振子,从中心馈电. 设置输入信号 Mesh. run solver.在post feko中查看相关结果

antenna

Antenna (radio) For other uses, see Antenna. Part of a series on Antennas Common types[show] Components[show] Systems[show] Safety and regulation[show] Radiation sources / regions[show] Characteristics[show] Techniques[show] v t e This article needs

Radio Basics for RFID

Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09/24 22:30:37) Radio Basics for RFID (2015/09

POJ 3020 Antenna Placement 最大匹配

Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most st

POJ - 3020 Antenna Placement

Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It

poj 3020 Antenna Placement 解题报告

题目链接:http://poj.org/problem?id=3020 题目意思:首先,请忽略那幅有可能误导他人成分的截图(可能我悟性差,反正有一点点误导我了). 给出一幅 h * w 的图,  “ * ” 表示 point of interest,“ o ” 忽略之.你可以对 " * " (假设这个 “* ”的坐标是 (i, j))画圈,每个圈只能把它四周的某一个点括住(或者是上面(i-1, j) or 下面(i+1, j) or 左边(i, j-1)  or 右边(i, j+1))

POJ 3020 Antenna Placement ,二分图的最小路径覆盖

题目大意: 一个矩形中,有N个城市'*',现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市. 问至少放置多少个基站才能使得所有的城市都覆盖无线? 无向二分图的最小路径覆盖 = 顶点数 –  最大二分匹配数/2 路径覆盖就是在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联: #include<cstdio> #include<cstring> #include<vector> #include<algor