Gradient Boosted Regression

3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(loss=‘ls‘learning_rate=0.1n_estimators=100subsample=1.0,min_samples_split=2min_samples_leaf=1min_weight_fraction_leaf=0.0max_depth=3init=None,random_state=Nonemax_features=Nonealpha=0.9verbose=0max_leaf_nodes=None,warm_start=False)[source]

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.


P

a

r

a

m

e

t

e

r

s

:


loss : {‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’)

loss function to be optimized. ‘ls’ refers to least squares regression. ‘lad’ (least absolute deviation) is a highly robust loss function solely based on order information of the input variables. ‘huber’ is a combination of the two. ‘quantile’ allows quantile regression (usealpha to specify the quantile).

learning_rate : float, optional (default=0.1)

learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and n_estimators.

n_estimators : int (default=100)

The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance.

max_depth : integer, optional (default=3)

maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if max_leaf_nodes is not None.

min_samples_split : integer, optional (default=2)

The minimum number of samples required to split an internal node.

min_samples_leaf : integer, optional (default=1)

The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf : float, optional (default=0.)

The minimum weighted fraction of the input samples required to be at a leaf node.

subsample : float, optional (default=1.0)

The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample interacts with the parametern_estimators. Choosing subsample < 1.0 leads to a reduction of variance and an increase in bias.

max_features : int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:
  • If int, then consider max_features features at each split.
  • If float, then max_features is a percentage and int(max_features * n_features)features are considered at each split.
  • If “auto”, then max_features=n_features.
  • If “sqrt”, then max_features=sqrt(n_features).
  • If “log2”, then max_features=log2(n_features).
  • If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an increase in bias.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes : int or None, optional (default=None)

Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.

alpha : float (default=0.9)

The alpha-quantile of the huber loss function and the quantile loss function. Only ifloss=‘huber‘ or loss=‘quantile‘.

init : BaseEstimator, None, optional (default=None)

An estimator object that is used to compute the initial predictions. init has to provide fitand predict. If None it uses loss.init_estimator.

verbose : int, default: 0

Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree.

warm_start : bool, default: False

When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution.

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.


A

t

t

r

i

b

u

t

e

s

:


feature_importances_ : array, shape = [n_features]

The feature importances (the higher, the more important the feature).

oob_improvement_ : array, shape = [n_estimators]

The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. oob_improvement_[0] is the improvement in loss of the first stage over the initestimator.

train_score_ : array, shape = [n_estimators]

The i-th score train_score_[i] is the deviance (= loss) of the model at iteration i on the in-bag sample. If subsample == 1 this is the deviance on the training data.

loss_ : LossFunction

The concrete LossFunction object.

`init` : BaseEstimator

The estimator that provides the initial predictions. Set via the init argument orloss.init_estimator.

estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]

The collection of fitted sub-estimators.

See also

DecisionTreeRegressorRandomForestRegressor

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

  1. Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19
staged_predict(X) Predict regression target at each stage for X.
transform(X[, threshold]) Reduce X to its most important features.
__init__(loss=‘ls‘learning_rate=0.1n_estimators=100subsample=1.0min_samples_split=2,min_samples_leaf=1min_weight_fraction_leaf=0.0max_depth=3init=Nonerandom_state=None,max_features=Nonealpha=0.9verbose=0max_leaf_nodes=Nonewarm_start=False)[source]
decision_function(*args**kwargs)[source]

DEPRECATED: and will be removed in 0.19

Compute the decision function of X.

Parameters:
X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:
score : array, shape = [n_samples, n_classes] or [n_samples]

The decision function of the input samples. The order of the classes corresponds to that in the attribute classes_. Regression and binary classification produce an array of shape [n_samples].

feature_importances_
Return the feature importances (the higher, the more important the
feature).
Returns: feature_importances_ : array, shape = [n_features]
fit(Xysample_weight=Nonemonitor=None)[source]

Fit the gradient boosting model.


P

a

r

a

m

e

t

e

r

s:


X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.

monitor : callable, optional

The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of _fit_stages as keyword arguments callable(i,self, locals()). If the callable returns True the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting.


R

e

t

u

r

n

s:


self : object

Returns self.

fit_transform(Xy=None**fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:
X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
params : mapping of string to any

Parameter names mapped to their values.

predict(X)[source]

Predict regression target for X.

Parameters:
X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:
y : array of shape = [n_samples]

The predicted values.

score(Xysample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters:
X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:
score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns: self :
staged_decision_function(*args**kwargs)[source]

DEPRECATED: and will be removed in 0.19

Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters:
X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:
score : generator of array, shape = [n_samples, k]

The decision function of the input samples. The order of the classes corresponds to that in the attribute classes_. Regression and binary classification are special cases with k == 1, otherwise k==n_classes.

staged_predict(X)[source]

Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters:
X : array-like of shape = [n_samples, n_features]

The input samples.

Returns:
y : generator of array of shape = [n_samples]

The predicted value of the input samples.

transform(Xthreshold=None)[source]

Reduce X to its most important features.

Uses coef_ or feature_importances_ to determine the most important features. For models with a coef_ for each class, the absolute sum over the classes is used.

Parameters:
X : array or scipy sparse matrix of shape [n_samples, n_features]

The input samples.

threshold : string, float or None, optional (default=None)

The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median” (resp. “mean”), then the threshold value is the median (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute threshold is used. Otherwise, “mean” is used by default.

Returns:
X_r : array of shape [n_samples, n_selected_features]

The input samples with only the selected features.

Demonstrate Gradient Boosting on the Boston housing dataset.

This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4.

print(__doc__)

# Author: Peter Prettenhofer <[email protected]>
#
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error

###############################################################################
# Load data
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]

###############################################################################
# Fit regression model
params = {‘n_estimators‘: 500, ‘max_depth‘: 4, ‘min_samples_split‘: 1,
          ‘learning_rate‘: 0.01, ‘loss‘: ‘ls‘}
clf = ensemble.GradientBoostingRegressor(**params)

clf.fit(X_train, y_train)
mse = mean_squared_error(y_test, clf.predict(X_test))
print("MSE: %.4f" % mse)

###############################################################################
# Plot training deviance

# compute test set deviance
test_score = np.zeros((params[‘n_estimators‘],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
    test_score[i] = clf.loss_(y_test, y_pred)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title(‘Deviance‘)
plt.plot(np.arange(params[‘n_estimators‘]) + 1, clf.train_score_, ‘b-‘,
         label=‘Training Set Deviance‘)
plt.plot(np.arange(params[‘n_estimators‘]) + 1, test_score, ‘r-‘,
         label=‘Test Set Deviance‘)
plt.legend(loc=‘upper right‘)
plt.xlabel(‘Boosting Iterations‘)
plt.ylabel(‘Deviance‘)

###############################################################################
# Plot feature importance
feature_importance = clf.feature_importances_
# make importances relative to max importance
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.subplot(1, 2, 2)
plt.barh(pos, feature_importance[sorted_idx], align=‘center‘)
plt.yticks(pos, boston.feature_names[sorted_idx])
plt.xlabel(‘Relative Importance‘)
plt.title(‘Variable Importance‘)
plt.show()

时间: 2024-08-09 19:53:50

Gradient Boosted Regression的相关文章

Gradient Boosted Regression Trees 2

Gradient Boosted Regression Trees 2 Regularization GBRT provide three knobs to control overfitting: tree structure, shrinkage, and randomization. Tree Structure The depth of the individual trees is one aspect of model complexity. The depth of the tre

Opencv2.4.9源码分析——Gradient Boosted Trees

一.原理 梯度提升树(GBT,Gradient Boosted Trees,或称为梯度提升决策树)算法是由Friedman于1999年首次完整的提出,该算法可以实现回归.分类和排序.GBT的优点是特征属性无需进行归一化处理,预测速度快,可以应用不同的损失函数等. 从它的名字就可以看出,GBT包括三个机器学习的优化算法:决策树方法.提升方法和梯度下降法.前两种算法在我以前的文章中都有详细的介绍,在这里我只做简单描述. 决策树是一个由根节点.中间节点.叶节点和分支构成的树状模型,分支代表着数据的走向

【Gradient Boosted Decision Tree】林轩田机器学习技术

GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比AdaBoost-Stump模型,就可以直观理解了 1)每轮都给调整sample的权重 2)获得gt(D,ut) 3)计算gt的投票力度alphat 最后返回一系列gt的线性组合. weighted error这个比较难搞,有没有不用动原来的模型,通过输入数据上做文章就可以达到同样的目的呢? 回想bag

机器学习技法(11)--Gradient Boosted Decision Tree

AdaBoost D Tree有了新的权重的概念. 现在的优化目标,如何进行优化呢? 不更改算法的部门,而想办法在输入的数据方面做修改. 权重的意义就是被重复取到的数据的次数.这样的话,根据权重的比例进行重复的抽样.最后的结果也和之前一样能够表达权重的意义在里面了. 在一个fully grown tree的情况下: 应对办法: 如果剪枝剪到极限的时候: 就是AdaBoost Stump. 在AdaBoost中: 有阴影的部分就是用来投票决定G最终结果的.这个方程式延伸一下: 对他们这样投票的过程

[11-3] Gradient Boosting regression

main idea:用adaboost类似的方法,选出g,然后选出步长 Gredient Boosting for regression: h控制方向,eta控制步长,需要对h的大小进行限制 对(x,残差)解regression,得到h 对(g(x),残差)解regression,得到eta

(转)XGBoost 与 Boosted Tree |《XGBoost 与 Boosted Tree | 我爱计算机》

//转自 <XGBoost 与 Boosted Tree | 我爱计算机> 1. 前言应 @龙星镖局  兄邀请写这篇文章.作为一个非常有效的机器学习方法,Boosted Tree是数据挖掘和机器学习中最常用的算法之一.因为它效果好,对于输入要求不敏感,往往是从统计学家到数据科学家必备的工具之一,它同时也是kaggle比赛冠军选手最常用的工具.最后,因为它的效果好,计算复杂度不高,也在工业界中有大量的应用. 2. Boosted Tree的若干同义词说到这里可能有人会问,为什么我没有听过这个名字

Boosted Tree

原文:http://www.52cs.org/?p=429 作者:陈天奇,毕业于上海交通大学ACM班,现就读于华盛顿大学,从事大规模机器学习研究. 注解:truth4sex  编者按:本文是对开源xgboost库理论层面的介绍,在陈天奇原文<梯度提升法和Boosted Tree>的基础上,做了如下注解:1)章节划分:2)注解和参考链接(以蓝色和红色字体标注).备注:图片可点击查看清晰版. 1. 前言应 @龙星镖局  兄邀请写这篇文章.作为一个非常有效的机器学习方法,Boosted Tree是数

机器学习算法之旅(转载)

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ In this post, we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are availabl

集成方法:渐进梯度回归树GBRT(迭代决策树)

http://blog.csdn.net/pipisorry/article/details/60776803 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF.在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随机森林相关的.模型组合+决策树相关算法有两种比较基本的形式:随机森林RF与GBDT,其他比较新的模