Hadoop.2.x_MR-Shuffle过程

1、map到reduce中间的一个过程

  洗牌,打乱(打乱我们传递的所有元素)(流程:input->map->reduce->output)

2、map()->shuffle->reduce()

map()接收数据,以wc为例,其中数据可是为<key,value>
在map()中获取每一行文本内容使用String.split或其他分隔方法分隔文本内容,如<0,hadoop spark hdfs hadoop>
分隔之后:<hadoop,1><spark,1><hdfs,1><hadoop,1>
从map()输出数据到reduce()接收数据进入shuffle阶段
经过shuffle到达reduce()
数据格式与map()输出格式一致
对数据value进行累加<hadoop,2><spark,1><hdfs,1>...
输出格式key文本内容分隔体,value出现的次数
输出到文本上的key与value以制表符\t分隔

3、shuffle过程

map()输出结果->内存(环形缓冲区,当内存大小达到指定数值,如80%,开始溢写到本地磁盘)
溢写之前,进行了分区partition操作,分区的目的在于数据的reduce指向,分区后进行二次排序,第一次是对partitions进行排序,第二次对各个partition中的数据进行排序,之后如果设置了combine,就会执行类似reduce的合并操作,还可以再进行压缩,因为reduce在拷贝文件时消耗的资源与文件大小成正比
内存在达到一定比例时,开始溢写到磁盘上
当文件数据达到一定大小时,本地磁盘上会有很多溢写文件,需要再进行合并merge成一个文件
reduce拷贝copy这些文件,然后进行归并排序(再次merge),合并为一个文件作为reduce的输入数据

  

时间: 2024-10-20 04:16:23

Hadoop.2.x_MR-Shuffle过程的相关文章

Hadoop学习之shuffle过程

转自:http://langyu.iteye.com/blog/992916,多谢分享,学习Hadopp性能调优的可以多关注一下 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方,Shuffle的正常意思是洗牌或弄乱,可能大家更熟悉的是Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里Shuffle是什么,那么请看这张图: 这张是官方对Shuffle过程的描述.但我可以肯定的是,

Hadoop学习笔记—10.Reduce阶段中的Shuffle过程

一.回顾Reduce阶段三大步凑 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Reduce阶段总共三个步凑,如下图所示: 其中,Step2.1就是一个Shuffle操作,它针对多个map任务的输出按照不同的分区(Partition)通过网络复制到不同的reduce任务节点上,这个过程就称作为Shuffle. PS:Hadoop的shuffle过程就是从map端输出到reduce端输入之间的过程,这一段应该是Hadoop中最核心的部分,因为涉及到Had

Hadoop中的Shuffle 与 Spark中的Shuffle得区别与联系

MapReduce过程.Spark和Hadoop以Shuffle为中心的对比分析 mapreduce与Spark的map-Shuffle-reduce过程 mapreduce过程解析(mapreduce采用的是sort-based shuffle) 将获取到的数据分片partition进行解析,获得k/v对,之后交由map()进行处理. map函数处理完成之后,进入collect阶段,对处理后的k/v对进行收集,存储在内存的环形缓冲区中. 当环形缓冲区中的数据达到阀值之后(也可能一直没有达到阀值

【Big Data - Hadoop - MapReduce】通过腾讯shuffle部署对shuffle过程进行详解

摘要: 通过腾讯shuffle部署对shuffle过程进行详解 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,TDW计算引擎包括两部分:MapReduce和Spark,两者内部都包含了一个重要的过程—Shuffle.本文对Shuffle过程进行解析,并对两个计算引擎的Shuffle过程进行比较. 腾讯分布式数据仓库(Tencent distributed Data Warehouse, 简称TDW)基于开源软件Hadoop和Hive进行构建,并且根据公司数据量大.计算复杂等

Hadoop计算中的Shuffle过程

Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce,Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有任何

hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化

https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随

大数据开发:剖析Hadoop和Spark的Shuffle过程差异

一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果. 二.编写本文的目的 本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异. 三.Had

Spark 学习: spark 原理简述与 shuffle 过程介绍

Spark学习: 简述总结 Spark 是使用 scala 实现的基于内存计算的大数据开源集群计算环境.提供了 java,scala, python,R 等语言的调用接口. Spark学习 简述总结 引言 1 Hadoop 和 Spark 的关系 Spark 系统架构 1 spark 运行原理 RDD 初识 shuffle 和 stage 性能优化 1 缓存机制和 cache 的意义 2 shuffle 的优化 3 资源参数调优 4 小结 本地搭建 Spark 开发环境 1 Spark-Scal

MapReduce Shuffle过程详解

Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce,Shuffle是必须要了解的.我看过很多相关方面的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越乱.前端时间在做MapReduce job性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有

【转】MapReduce:详解Shuffle过程

——转自:{http://langyu.iteye.com/blog/992916} Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能