Bzoj4870 [SXOI2017]组合数问题

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 155  Solved: 78

Description

Input

第一行有四个整数 n, p, k, r,所有整数含义见问题描述。

1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1

Output

一行一个整数代表答案。

Sample Input

2 10007 2 0

Sample Output

8

HINT

Source

黑吉辽沪冀晋六省联考

数学问题 组合数

震惊!考场上花式骗分竟然可以拿到80分!

正解:

  这个东西当然没有什么既成的公式,需要用DP推公式,和平常的公式推DP正好反过来了。

  发现这个式子的项覆盖了nk内所有%k==r的位置,那么可以考虑这个式子的组合意义——

  在全部nk个物品中,选出任意个物品使得选出的物品数%k==r的方案数!

  设f[考虑到第i个物品][选出数量%k==j]=方案数,于是变成了可以$O(n^3)$推出来的背包问题?

  还可以更加简单粗暴,$f[2n][(i+j)%k]=\sum f[n][i]*f[n][j] $ $O(n^2 logn)$倍增出解。

 1 /*by SilverN*/
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<vector>
 8 #define LL long long
 9 using namespace std;
10 const int mxn=100010;
11 int read(){
12     int x=0,f=1;char ch=getchar();
13     while(ch<‘0‘ || ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
14     while(ch>=‘0‘ && ch<=‘9‘){x=x*10-‘0‘+ch;ch=getchar();}
15     return x*f;
16 }
17 int n,P,k,r;
18 struct num{
19     int x[52];
20     void init(){
21         memset(x,0,sizeof x);
22     }
23 }f;
24 num calc(const num &a,const num &b){
25     num res;
26     res.init();
27     for(int i=0;i<=k;i++)
28         for(int j=0;j<=k;j++)
29             (res.x[(i+j)%k]+=(LL)a.x[i]*b.x[j]%P)%=P;
30     return res;
31 }
32 num ksm(num a,LL t){
33     num res;
34     res.init();res.x[0]=1;
35     while(t){
36         if(t&1)res=calc(res,a);
37         a=calc(a,a);
38         t>>=1;
39     }
40     return res;
41 }
42 int main(){
43     int i,j;
44     n=read();P=read();k=read();r=read();
45     f.x[0]=1;
46     f.x[1%k]+=1;
47     f=ksm(f,(LL)n*k);
48 //    for(i=0;i<=k;i++)printf("%d\n",f.x[i]);
49     printf("%d\n",f.x[r]);
50     return 0;
51 }
时间: 2024-10-17 14:49:29

Bzoj4870 [SXOI2017]组合数问题的相关文章

[BZOJ4870][SHOI2017]组合数问题(组合数动规)

4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Status][Discuss] Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 Output 一行一个整数代表答案. Sample Input 2 10007

【BZOJ4870】组合数问题 [矩阵乘法][DP]

组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. Output 一行一个整数代表答案. Sample Input 2 10007 2 0 Sample Output 8 HINT 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 Solution 首先,不难发

bzoj4870 [Shoi2017]组合数问题

4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 747  Solved: 397[Submit][Status][Discuss] Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 ? 1 Output 一行一个整数代表答案. Sample Input 2 10007

待 题表

题表 达哥终极杂题表Bzoj2839 hdu6021 Codeforces 804DBzoj2248 hdu5575 Codeforces 786CBzoj2013 bzoj2676 Codeforces 803CBzoj2386 bzoj3782 Codeforces 813DBzoj2699 cogs1667 Codeforces 814DBzoj4798 bzoj2064 Codeforces 814EBzoj4639 bzoj3505 Codeforces 815ABzoj4417 bz

[Shoi2017]组合数问题 BZOJ4870

这道题可以根据组合数的实际意义来理解,就是从n*k个物品中选择除k余r个物品的方案数,那么就可以得到用f[i][j]表示在前i个物品中,选择j个物品的方案数,其中j是对k取模后的结果,那么f[i][j]=f[i-1][j](在第i为不取)+f[i-1][(j-1+k)%k](在第i为取),可以发现,第i位只与i-1位有关系那么久可以用矩阵快速幂优化, 在做矩阵乘法的时候,要特别注意矩阵乘特别容易爆int,所以矩阵数组要开成long long 另外这道题还有一个坑点,就是当k=1,r=0是,转移到

BZOJ4870:[SHOI2017]组合数问题——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=4870 https://www.luogu.org/problemnew/show/P3746 看网上一群人说“傻逼题”,我感觉我傻逼了. 首先我们把式子转换一下变成求有nk件物品,我取的物品数%k==r的方案数有多少. 显然f[i][j]=f[i-1][j]+f[i-1][j-1]. 但就没人教一下f[i][j]=f[i-1][j]+f[i-1][j-1]如何矩乘吗…… 那我就引洛谷的题解了: 可

组合数问题

组合数公式: 计算组合数的递推方法: C[i, j] := C[i - 1, j] + C[i - 1, j - 1]  (0 < i ≤ j ≤ m ≤ n) 与杨辉三角在形式上一致. 代码: for (int i = 1; i <= n; i++) { c[i][1] = i % k; c[i][i] = 1; // 预处理 } for (int i = 2; i <= n; i++) for (int j = 2; j <= i - 1; j++) // 递推 c[i][j]

1056. 组合数的和

1056. 组合数的和(15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 给定N个非0的个位数字,用其中任意2个数字都可以组合成1个2位的数字.要求所有可能组合出来的2位数字的和.例如给定2.5.8,则可以组合出:25.28.52.58.82.85,它们的和为330. 输入格式: 输入在一行中先给出N(1<N<10),随后是N个不同的非0个位数字.数字间以空格分隔. 输出格式: 输出所有可能组合出来的2

51nod 1161 组合数,规律

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1161 显然,题目可以转化为矩阵求解,但复杂度显然时空都不允许,我们如果自己把这个N*N矩阵的前几项列出来的话就会发现和杨辉三角的某一部分相似, 对照一下发现这个矩阵的第一行对应的就是杨辉三角的某一斜列,依次向下递减,也就是说我们只要知道这几个组合数,就能推导出来这个矩阵. 对于每一个K,对应的矩阵首行元素就是 :  C(k-1,0),C(k,1),C(k+1,2)...