本来来自 :http://blog.csdn.net/u010402786/article/details/51682917
一、书籍
Deep learning (2015)
作者:Bengio
下载地址:http://www.deeplearningbook.org/
二、理论
1.在神经网络中提取知识
Distilling the knowledge in a neural network
作者:G. Hinton et al.
2.深度神经网络很易受骗:高信度预测无法识别的图片
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
作者:A. Nguyen et al.
3.深度神经网络特征的可迁移性如何?
How transferable are features in deep neural networks? (2014),
作者:J. Yosinski et al.
4.深挖卷积网络的各个细节
Return of the Devil in the Details: Delving Deep into Convolutional Nets (2014)
作者:K. Chatfield et al.
5.为什么无监督预训练对深度学习有帮助?
Why does unsupervised pre-training help deep learning (2010)
作者:D. Erhan et al. (Bengio)
6.理解训练深度前馈神经网络的难点
Understanding the difficulty of training deep feedforward neural networks (2010)
作者:X. Glorot and Y. Bengio
三、优化/网络结构
简介:本部分从文献7到文献14为神经网络优化的一些方法,尤其是文献7的批归一化更是在业界产生巨大的影响;文献15到文献22为网络结构的变化,包括全卷积神经网络等。这些参考文献都是非常具有参考价值的干货!
7.Batch Normalization 算法:通过减少内部协变量转化加速深度网络的训练(推荐)
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015)
作者:S. Loffe and C. Szegedy (Google)
8.Dropout:一个预防神经网络过拟合的简单方式
Dropout: A simple way to prevent neural networks from overfitting (2014)
作者:N. Srivastava et al. (Hinton)
9.Adam:一个随机优化的方法
Adam: A method for stochastic optimization (2014)
作者:D. Kingma and J. Ba
10.论深度学习领域初始化和动量的重要性
On the importance of initialization and momentum in deep learning (2013)
作者:I. Sutskever et al. (Hinton)
11.使用 Dropconnect 的神经网络正则化
Regularization of neural networks using dropconnect (2013)
作者:L. Wan et al. (LeCun)
12.超参数最优化的随机搜索
Random search for hyper-parameter optimization (2012)
作者:J. Bergstra and Y. Bengio
13.图像识别中的深度残差学习
Deep residual learning for image recognition (2016)
作者:K. He et al. (Microsoft)
14.用于物体精准检测和分割的基于区域的卷积网络
Region-based convolutional networks for accurate object detection and segmentation (2016)
作者:R. Girshick et al.(Microsoft)
15.更深的卷积网络
Going deeper with convolutions (2015)
作者:C. Szegedy et al. (Google)
16.快速 R-CNN 网络
Fast R-CNN (2015)
作者: R. Girshick (Microsoft)
16.更快速的 R-CNN 网络:使用区域网络的实时物体检测
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015)
作者: S. Ren et al.
17.用于语义分割的全卷积神经网络
Fully convolutional networks for semantic segmentation (2015)
作者:J. Long et al.
18.大规模图像识别的深度卷积网络
Very deep convolutional networks for large-scale image recognition (2014)
作者:K. Simonyan and A. Zisserman
19.OverFeat:使用卷积网络融合识别、本地化和检测
OverFeat: Integrated recognition, localization and detection using convolutional networks (2014)
作者:P. Sermanet et al.(LeCun)
20.可视化以及理解卷积网络
Visualizing and understanding convolutional networks (2014)
作者:M. Zeiler and R. Fergus
21.Maxout 网络
Maxout networks (2013)
作者:I. Goodfellow et al. (Bengio)
22.Network In Network 深度网络架构
Network in network (2013)
作者:M. Lin et al.
四、图像
1.使用卷积神经网络在自然环境下阅读文本
Reading text in the wild with convolutional neural networks (2016)
作者:M. Jaderberg et al. (DeepMind)
2.Imagenet 大规模视觉识别挑战赛
Imagenet large scale visual recognition challenge (2015)
作者:O. Russakovsky et al.
3.DRAW:一个用于图像生成的循环神经网络
DRAW: A recurrent neural network for image generation (2015)
作者:K. Gregor et al.
4.对精确的物体检测和语义切割更为丰富的特征分层
Rich feature hierarchies for accurate object detection and semantic segmentation (2014)
作者: R. Girshick et al.
5.使用卷积神经网络学习和迁移中层图像表征
Learning and transferring mid-Level image representations using convolutional neural networks (2014)
作者:M. Oquab et al.
6.DeepFace:在面部验证任务中接近人类表现
DeepFace: Closing the Gap to Human-Level Performance in Face Verification (2014)
作者:Y. Taigman et al. (Facebook)
五、视频 / 人类行为
1.利用卷积神经网络进行大规模视频分类(2014)
Large-scale video classification with convolutional neural networks (2014)
作者:A. Karpathy et al. (FeiFei)
2.DeepPose:利用深度神经网络评估人类姿势
DeepPose: Human pose estimation via deep neural networks (2014)
作者:A. Toshev and C. Szegedy (Google)
3.用于视频中动作识别的双流卷积网络
Two-stream convolutional networks for action recognition in videos (2014)
作者:K. Simonyan et al.
4.用于人类动作识别的 3D 卷积神经网络(这篇文章针对连续视频帧进行处理,是个不错的)
3D convolutional neural networks for human action recognition (2013)
作者:S. Ji et al.
5.带有改进轨迹的动作识别
Action recognition with improved trajectories (2013)
作者:H. Wang and C. Schmid
6.用独立子空间分析,学习用于动作识别的等级恒定的时空特征
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis (2011)
作者:Q. Le et al
六、自然语言处理
1.用 RNN 编码——解码器学习短语表征,实现统计机器翻译
Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)
作者:K. Cho et al.(Bengio)
2.一个为句子建模的卷积神经网络
A convolutional neural network for modelling sentences (2014)
作者:N. Kalchbrenner et al.
3.用于句子分类的卷积神经网络
Convolutional neural networks for sentence classification (2014)
作者:Y. Kim
4.斯坦福 coreNLP 自然语言处理工具
The stanford coreNLP natural language processing toolkit (2014)
作者:C. Manning et al.
5.基于情感树库应用于情感组合研究的递归深度网络模型
Recursive deep models for semantic compositionality over a sentiment treebank (2013)
作者:R. Socher et al.
6.基于语言模型的循环神经网络
Recurrent neural network based language model (2010)
作者:T. Mikolov et al.
7.自动语音识别:一种深度学习的方法
Automatic Speech Recognition - A Deep Learning Approach (Book, 2015)
作者:D. Yu and L. Deng (Microsoft)
8.使用深度循环网络进行语音识别
Speech recognition with deep recurrent neural networks (2013)
作者:A. Graves (Hinton)
9.基于上下文预训练的深度神经网络在大规模词表语音识别中的应用
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012)
作者:G. Dahl et al.
10.使用深度信念网络进行声学建模
Acoustic modeling using deep belief networks (2012)
作者:A. Mohamed et al. (Hinton)
七、无监督学习
1.自编码变量贝叶斯
Auto-Encoding Variational Bayes (2013)
作者:D. Kingma and M. Welling
2.用大规模无监督学习搭建高水平特征
Building high-level features using large scale unsupervised learning (2013)
作者:Q. Le et al.
3.无监督特征学习中单层网络分析
An analysis of single-layer networks in unsupervised feature learning (2011)
作者:A. Coates et al.
4.堆栈降噪解码器:在本地降噪标准的深度网络中学习有用的表征
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010)
作者:P. Vincent et al. (Bengio)
5.训练受限波兹曼机的实践指南
A practical guide to training restricted boltzmann machines (2010)
作者:G. Hinton
八、开源架构
1.TensorFlow:异构分布式系统上的大规模机器学习
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (2016)
作者:M. Abadi et al. (Google)
2.Theano:一个针对快速计算数学表达公式的Python框架
Theano: A Python framework for fast computation of mathematical expressions
作者:R. Al-Rfou et al. (Bengio)
3.MatConvNet: 针对matlab 的卷积神经网络
MatConvNet: Convolutional neural networks for matlab (2015)
作者:A. Vedaldi and K. Lenc
4.Caffe:快速特征嵌入的卷积结构
Caffe: Convolutional architecture for fast feature embedding (2014)
作者: Y. Jia et al.
九、2016最新论文
1.对立学习推论
Adversarially Learned Inference (2016)
作者:V. Dumoulin et al.
2.理解卷积神经网络
Understanding Convolutional Neural Networks (2016)
作者:J. Koushik
3.SqueezeNet 模型:达到 AlexNet 水平的准确率,却使用缩减 50 倍的参数以及< 1MB 的模型大小
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size (2016)
作者:F. Iandola et al.
4.学习搭建问答神经网络
Learning to Compose Neural Networks for Question Answering (2016)
作者:J. Andreas et al.
5.用深度学习和大规模数据搜集,学习眼手协调的机器人抓取
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016)(Google)
作者:S. Levine et al.
6.将人隔离在外:贝叶斯优化算法回顾
Taking the human out of the loop: A review of bayesian optimization (2016)
作者:B. Shahriari et al.
7.Eie:压缩神经网络的高效推理引擎
Eie: Efficient inference engine on compressed deep neural network (2016)
作者:S. Han et al.
8.循环神经网络的自适性计算时间
Adaptive Computation Time for Recurrent Neural Networks (2016)
作者:A. Graves
9.像素循环神经网络
Pixel Recurrent Neural Networks (2016)
作者:A. van den Oord et al. (DeepMind)
10.LSTM:一场搜索空间的奥德赛之旅
LSTM: A search space odyssey (2016)
作者:K. Greff et al.
备注:本博客的所有论文下载链接: http://pan.baidu.com/s/1pL1UWRp
密码: 3kfj