各种排序算法的优缺点

一、冒泡排序 
  已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比 较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。   优点:稳定; 
  缺点:慢,每次只能移动相邻两个数据。   二、选择排序 
  每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 
  选择排序是不稳定的排序方法。 
  n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:   ①初始状态:无序区为R[1..n],有序区为空。   ②第1趟排序 
  在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。   …… 
  ③第i趟排序 
  第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。该趟 排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 
  这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。   优点:移动数据的次数已知(n-1次);   缺点:比较次数多。   三、插入排序 
  已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值, 若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来 a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)   优点:稳定,快; 
  缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。 
  四、缩小增量排序 
  由希尔在1959年提出,又称希尔排序(shell排序)。 
  已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入 排序的效果很好。首先取一增量d(d<n),将a[1]、a[1+d]、a[1+2d]……列为第一组,a[2]、a[2+d]、 a[2+2d]……列为第二组……,a[d]、a[2d]、a[3d]……列为最后一组以次类推,在各组内用插入排序,然后取d‘<d,重复上述操 作,直到d=1。   优点:快,数据移动少; 
  缺点:不稳定,d的取值是多少,应取多少个不同的值,都无法确切知道,只能凭经验来取。   五、快速排序 
  快速排序是冒泡排序的改进版,是目前已知的最快的排序方法。 
  已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据a[x] 作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数 据<a[x],a[k+1]~a[n]中的每一个数据>a[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n] 两组数据进行快速排序。   优点:极快,数据移动少;   缺点:不稳定。   六、箱排序 
  已知一组无序正整数数据a[1]、a[2]、……a[n],需将其按升序排列。首先定义一个数组x[m],且m>=a[1]、a[2]、……a[n],接着循环n次,每次x[a]++.   优点:快,效率达到O(1) 
缺点:数据范围必须为正整数并且比较小

require.async([‘wkcommon:widget/ui/lib/sio/sio.js‘], function(sio) { var url = ‘https://cpro.baidustatic.com/cpro/ui/c.js‘; sio.callByBrowser( url, function () { BAIDU_CLB_fillSlotAsync(‘u2845605‘,‘cpro_u2845605‘); } ); });

void function(e,t){for(var n=t.getElementsByTagName("img"),a=+new Date,i=[],o=function(){this.removeEventListener&&this.removeEventListener("load",o,!1),i.push({img:this,time:+new Date})},s=0;s< n.length;s++)!function(){var e=n[s];e.addEventListener?!e.complete&&e.addEventListener("load",o,!1):e.attachEvent&&e.attachEvent("onreadystatechange",function(){"complete"==e.readyState&&o.call(e,o)})}();alog("speed.set",{fsItems:i,fs:a})}(window,document);

六、归并排序   
  归并排序是多次将两个或两个以上的有序表合并成一个新的有序表。最简单的归并是直接将两个有序的子表合并成一个有序的表。 
 
  归并排序是稳定的排序.即相等的元素的顺序不会改变.如输入记录 1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按输入的顺序.这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输入的顺序排列时很重要.这也是它比快速排序优势的地方. 
 
归并排序:归并排序是一种非就地排序,将需要与待排序序列一样多的辅助空间。在使用它对两个己有序的序列归并,将有无比的优势。其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。对数据的有序性不敏感。若数据节点数据量大,那将不适合。但可改造成索引操作,效果将非常出色。 
  
堆排序:由于它在直接选择排序的基础上利用了比较结果形成。效率提高很大。它完成排序的总比较次数为O(nlog2n)。它是对数据的有序性不敏感的一种算法。但堆排序将需要做两个步骤:-是建堆,二是排序(调整堆)。所以一般在小规模的序列中不合适,但对于较大的序列,将表现出优越的性能。

时间: 2024-11-02 08:19:29

各种排序算法的优缺点的相关文章

Java数据结构和算法(三):常用排序算法与经典题型

常用的八种排序算法 1.直接插入排序 我们经常会到这样一类排序问题:把新的数据插入到已经排好的数据列中.将第一个数和第二个数排序,然后构成一个有序序列将第三个数插入进去,构成一个新的有序序列.对第四个数.第五个数--直到最后一个数,重复第二步.如题所示: 直接插入排序(Straight Insertion Sorting)的基本思想:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的.如此反复循环,直到全部排

数据结构——各排序算法的比较

1.从时间复杂度比较  从平均时间复杂度来考虑,直接插入排序.冒泡排序.直接选择排序是三种简单的排序方法,时间复杂度都为O(n2),而快速排序.堆排序.二路归并排序的时间复杂度都为O(nlog2n),希尔排序的复杂度介于这两者之间.若从最好的时间复杂度考虑,则直接插入排序和冒泡排序的时间复杂度最好,为O(n),其它的最好情形同平均情形相同.若从最坏的时间复杂度考虑,则快速排序的为O(n2),直接插入排序.冒泡排序.希尔排序同平均情形相同,但系数大约增加一倍,所以运行速度将降低一半,最坏情形对直接

八大排序算法

转载:http://blog.csdn.net/hguisu/article/details/7776068 目录(?)[+] 概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速

【数据结构】非比较排序算法(实现计数排序和基数排序)

● 计数排序 1.算法思想: 计数排序是直接定址法的变形.通过开辟一定大小的空间,统计相同数据出现的次数,然后回写到原序列中. 2.步骤: 1)找到序列中的最大和最小数据,确定开辟的空间大小. 2)开辟空间,利用开辟的空间存放各数据的个数. 3)将排好序的序列回写到原序列中. 具体实现如下: void CountSort(int *arr, int size) {  assert(arr);  int min = arr[0];  int max = arr[0];  int num = 0;

数据结构与算法之——八大排序算法

附:关于这个主题,网上好的文章已经数不胜数,本篇是整合后的文章. 正文: 一.概述 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 本文所指八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 二.排序算法详述 1.

深入排序算法的多语言实现

深入浅出排序算法的多语言实现 作者:白宁超 2015年10月8日20:08:11 摘要:十一假期于实验室无趣,逐研究起数据结构之排序.起初觉得就那么几种排序,两三天就搞定了,后来随着研究的深入,发觉里面有不少东西.本文介绍常用的排序算法,主要从以下几个方面:算法的介绍.算法思想.算法步骤.算法优缺点.算法实现.运行结果.算法优化等.最后对本文进行总结.本文为作者原创,程序经测试无误.部分资料引用论文和网络材料以及博客,后续参见参考文献.(本文原创,转载注明出处) 1 排序的基本概念 排序: 所谓

各种排序算法的利弊

对n较大的排序记录.一般的选择都是时间复杂度为O(nlog2n)的排序方法. 时间复杂度来说: (1)平方阶(O(n2))排序 各类简单排序:直接插入.直接选择和冒泡排序:(2)线性对数阶(O(nlog2n))排序 快速排序.堆排序和归并排序:(3)O(n1+§))排序,§是介于0和1之间的常数. 希尔排序(4)线性阶(O(n))排序 基数排序,此外还有桶.箱排序. 说明: 当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O(n): 而快速排序则

排序算法之堆排序(Heapsort)解析

一.堆排序的优缺点(pros and cons) (还是简单的说说这个,毕竟没有必要浪费时间去理解一个糟糕的的算法) 优点: 堆排序的效率与快排.归并相同,都达到了基于比较的排序算法效率的峰值(时间复杂度为O(nlogn)) 除了高效之外,最大的亮点就是只需要O(1)的辅助空间了,既最高效率又最节省空间,只此一家了 堆排序效率相对稳定,不像快排在最坏情况下时间复杂度会变成O(n^2)),所以无论待排序序列是否有序,堆排序的效率都是O(nlogn)不变(注意这里的稳定特指平均时间复杂度=最坏时间复

八大排序算法总结及C/C++实现

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1. 插入排序-直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到