朴素贝叶斯(Naive Bayes)及Python实现

朴素贝叶斯(Naive Bayes)及Python实现

http://www.cnblogs.com/sumai

1.模型

  在GDA 中,我们要求特征向量 x 是连续实数向量。如果 x 是离散值的话,可以考虑采用朴素贝叶斯的分类方法。

  以垃圾邮件分类为例子,采用最简单的特征描述方法,首先找一部英语词典,将里面的单词全部列出来。然后将每封邮件表示成一个向量,向量中每一维都是字典中的一个词的 0/1值,1 表示该词在邮件中出现,0 表示未出现。

比如一封邮件中出现了“ a”和“ buy”,没有出现“ aardvark”、“ aardwolf”和“ zygmurgy”,
那么可以形式化表示为:

  

  如果像GDA那么去建模的话,那么特征向量x是服从一个多项式分布,如果有5000个单词的话,那么x就有2^5000种可能,建模就需要2^5000-1个参数,参数太多。因此,需要在建模中改变假设,朴素贝叶斯模型不对特征向量x作出假设,而是对它的每个分量xi进行假设,并且假设各个分量之间独立。

  朴素贝叶斯模型对特征向量x的各个分量xi和y有如下假设:

  

  因此我们得到:

  

  这里只需要5000个参数,远少于之前所需的参数个数。

2.评价

该模型的对数似然函数如下:

  

 

3.优化

对各个参数进行求导后令等式为0,得到:

  

   当然,朴素贝叶斯方法可以扩展到 x 和 y 都有多个离散值的情况。对于特征是连续值的情况,我们也可以采用分段的方法来将连续值转化为离散值,这时xi|y就是服从多项分布而不是伯努利分布了。具体怎么转化能够最优,我们可以采用信息增益的度量方法来确定。

 

时间: 2024-08-04 22:17:32

朴素贝叶斯(Naive Bayes)及Python实现的相关文章

朴素贝叶斯(naive bayes)

朴素贝叶斯(naive bayes) 主要参考资料:<机器学习实战><统计学习方法> 1.朴素贝叶斯分类原理 朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设(称为朴素的原因)的分类方法.先看看维基百科中贝叶斯定理的描述: 贝叶斯定理(维基百科) 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的:然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述. 公式描述如下: P(A|B)=P(A|B)P(A)P(B) 其中P(A|B)是在B发生的情况下

朴素贝叶斯算法简介及python代码实现分析

概念: 贝叶斯定理:贝叶斯理论是以18世纪的一位神学家托马斯.贝叶斯(Thomas Bayes)命名.通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A(发生)的条件下的概率是不一样的:然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述 朴素贝叶斯:朴素贝叶斯方法是基于贝叶斯定理和特征条件独立假设的分类方法.对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率(Maximum A Posterio

朴素贝叶斯-垃圾邮件分类实现

1. 前言 <朴素贝叶斯算法(Naive Bayes)>,介绍了朴素贝叶斯原理.本文介绍的是朴素贝叶斯的基础实现,用来垃圾邮件分类. 2. 朴素贝叶斯基础实现 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类的方法.对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布:然后基于此模型,对于给定的输入$x$,利用贝叶斯定理求出后验概率最大的输出$y$,完整代码GitHub. 输入: #垃圾邮件的内容 posting_list = [ ['m

NLP系列(2)_用朴素贝叶斯进行文本分类(上)

作者:寒小阳 && 龙心尘 时间:2016年1月. 出处:http://blog.csdn.net/longxinchen_ml/article/details/50597149 http://blog.csdn.net/han_xiaoyang/article/details/50616559 声明:版权全部,转载请联系作者并注明出处 1. 引言 贝叶斯方法是一个历史悠久.有着坚实的理论基础的方法,同一时候处理非常多问题时直接而又高效.非常多高级自然语言处理模型也能够从它演化而来.因此,

Step by Step 改进朴素贝叶斯算法

引言 如果你对naive bayes认识还处于初级阶段,只了解基本的原理和假设,还没有实现过产品级的代码,那么这篇文章能够帮助你一步步对原始的朴素贝叶斯算法进行改进.在这个过程中你将会看到朴素贝叶斯假设的一些不合理处以及局限性,从而了解为什么这些假设在简化你的算法的同时,使最终分类结果变得糟糕,并针对这些问题提出了改进的方法. 朴素贝叶斯(Naive Bayes) 出处: <机器学习>(Machine Learning by Tom M.Mitchell) 符号和术语 假设待分类的实例 X 可

统计学习方法 李航---第4章 朴素贝叶斯法

第4章 朴素贝叶斯法 朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法.对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出Y. 4.1 朴素贝叶斯法的学习与分类 基本方法 朴素贝叶斯法通过训练数据集学习X和Y的联合概率分布 P(X,Y). 具体地,学习以 下先验概率分布及条件概率分布. 先验概率分布 条件概率分布 条件概率分布有指数级数量的参数,其估计实际是不可行的

斯坦福机器学习实现与分析之六(朴素贝叶斯)

朴素贝叶斯(Naive Bayes)适用于离散特征的分类问题,对于连续问题则需将特征离散化后使用.朴素贝叶斯有多元伯努利事件模型和多项式事件模型,在伯努利事件模型中,特征每一维的值只能是0或1,而多项式模型中特征每一维的值可取0到N之间的整数,因此伯努利模型是多项式模型的一种特例,下面的推导就直接使用伯努利模型. 朴素贝叶斯原理推导 与GDA类似,朴素贝叶斯对一个测试样本分类时,通过比较p(y=0|x)和p(y=1|x)来进行决策.根据贝叶斯公式: \( \begin{aligned} p(y=

斯坦福CS229机器学习课程笔记四:GDA、朴素贝叶斯、多项事件模型

生成学习与判别学习 像逻辑回归,用hθ(x) = g(θTx) 直接地来建模 p(y|x; θ) :或者像感知机,直接从输入空间映射到输出空间(0或1),它们都被称作判别学习(discriminative learning).与之相对的是生成学习(generative learning),先对 p(x|y) 与 p(y) 建模,然后通过贝叶斯法则导出后验条件概率分布分母的计算规则为全概率公式:p(x) = p(x|y = 1)p(y = 1) + p(x|y =0)p(y = 0).这一节介绍的

统计学习四:1.朴素贝叶斯

全文引用自<统计学习方法>(李航) 朴素贝叶斯(naive Bayes)法 是以贝叶斯定理为基础的一中分类方法,它的前提条件是假设特征条件相互独立.对于给定的训练集,它首先基于特征条件假设的前提条件,去学习输入与输出的条件概率分布,然后根据此分布模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 1.朴素贝叶斯的学习与分类 1.1 基本方法 假设输入空间\(X \subseteq R^n\)为n维向量的集合,输入空间为类标记集合\(Y=\{c_1,c_2,\cdots,c_K\}\

朴素贝叶斯算法小结

朴素贝叶斯naive bayes是直接生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y)P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)P(Y|X)=P(X,Y)/P(X)得出. 数学基础: 1. 最大似然估计 原文地址:https://www.cnblogs.com/guodavid/p/10169867.html