LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)

链接:

https://vjudge.net/problem/LightOJ-1282

题意:

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

思路:

后三位快速幂取余,考虑前三位。
\(n^k\)可以表示为\(a*10^m\)即使用科学计数法。
对两边取对数得到\(k*log10(n) = log10(a)+m\)
则x = log10(a)是k*log10(n)的小数部分。
a = pow(10, x).就是科学计数法的前面部分。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>

using namespace std;
typedef long long LL;
const int INF = 1e9;

const int MAXN = 1e6+10;
const int MOD = 1e9+7;

LL n, k;

LL PowMod(LL a, LL b)
{
    LL res = 1;
    while(b)
    {
        if (b&1)
            res = res*a%1000;
        a = a*a%1000;
        b >>= 1;
    }
    return res;
}

int main()
{
    int t, cnt = 0;
    scanf("%d", &t);
    while(t--)
    {
        printf("Case %d:", ++cnt);
        scanf("%lld%lld", &n, &k);
        double v = 1.0*k*log10(n);
        v -= (LL)v;
        LL r1 = (LL)(pow(10, v)*100);
        LL r2 = PowMod(n, k);
        printf(" %lld %03lld\n", r1, r2);
    }

    return 0;
}

原文地址:https://www.cnblogs.com/YDDDD/p/11846328.html

时间: 2024-11-30 00:28:46

LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)的相关文章

UVA 11029 || Lightoj 1282 Leading and Trailing 数学

Leading and Trailing You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. Input Input starts with an integer T (≤ 1000), denoting the number of test cases. Each case st

1282 - Leading and Trailing ---LightOj1282(快速幂 + 数学)

http://lightoj.com/volume_showproblem.php?problem=1282 题目大意: 求n的k次方的前三位和后三位数然后输出 后三位是用快速幂做的,我刚开始还是不会快速幂,后来慢慢理解了. 前三位求得比较厉害 我们可以吧n^k = a.bc * 10.0^m; k*log10(n)  = log10(a.bc) + m; m为k * lg(n)的整数部分,lg(a.bc)为k * lg(n)的小数部分; x = log10(a.bc) = k*log10(n)

LightOJ 1282 Leading and Trailing (数学)

题意:求 n^k 的前三位和后三位. 析:后三位,很简单就是快速幂,然后取模1000,注意要补0不全的话,对于前三位,先取10的对数,然后整数部分就是10000....,不用要,只要小数部分就好,然后取前三位. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #inc

HDU1061_Rightmost Digit【快速幂取余】

Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 33161    Accepted Submission(s): 12696 Problem Description Given a positive integer N, you should output the most right digit of

poj 1845 Sumdiv (同余定理,快速幂取余)

链接:poj 1845 题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的所有因子之和为 S = 

hdu 2817 A sequence of numbers(快速幂取余)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 题目大意:给出三个数,来判断是等差还是等比数列,再输入一个n,来计算第n个数的值. 1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #define m 200907 5 6 using namespace std; 7 8 __int64 fun(__int64 j,__int64 k) 9

快速幂取余 [转]

转自: http://blog.csdn.net/acm_code/article/details/38270829 求a^b mod c 算法1. 首先直接地来设计这个算法: int ans=1, i; for(i=1;i<=b;i++) ans*=a; ans%=c; 这个算法的时间复杂度体现在for循环中,为O(b). 这个算法存在着明显的问题,如果a和b过大,很容易就会溢出. 那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式: a^b mod c=(a mod c)

LightOJ 1282 Leading and Trailing (快数幂 + 数学)

http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1282 Description You are given two integers: n and k, your task is t

LightOJ 1282 Leading and Trailing 数论

题目大意:求n^k的前三位数 和 后三位数. 题目思路:后三位数直接用快速幂取模就行了,前三位则有些小技巧: 对任意正数都有n=10^T(T可为小数),设T=x+y,则n=10^(x+y)=10^x*10^y,其中10^x为10的整倍数(x为整数确定数位长度),所以主要求出10^y的值. T=log10(n^k)=klog10(n),可以调用fmod函数求其小数部分即y值. #include<iostream> #include<algorithm> #include<cst