算法分析之输油管道问题

某石油公司计划建造一条由东向西的主输油管道。该管道要穿过一个有n口油井的油田。从每口油井都要有一条输油管道沿最短路经(或南或北)与主管道相连。
如果给定n口油井的位置,即它们的x坐标(东西向)和y坐标(南北向),应如何确定主管道的最优位置,即使各油井到主管道之间的输油管道长度总和最小的位置?
给定n口油井的位置,编程计算各油井到主管道之间的输油管道最小长度总和。
输入
第1行是一个整数n,表示油井的数量(1≤n≤10 000)。
接下来n行是油井的位置,每行两个整数x和y
(﹣10 000≤x,y≤10 000)。
输出
各油井到主管道之间的输油管道最小长度总和。

                                                                                       

设n口油井的位置分别为Pi=(Xi,Yi),i=1~n。由于主输油管道是东西向的,因此可用其主轴线的y坐标唯一确定其位置。主管道的最优位置y应该满足:

由中位数定理可知,y是中位数。

                                                

算法1:对数组a排序(一般是升序),取中间的元素

int n;					//油井的数量
int x;					//x坐标,读取后丢弃
int a[1000];				//y坐标
cin>>n;
for(int k=0;k<n;k++)
	cin>>x>>a[k];
sort(a,a+n);				//按升序排序
//计算各油井到主管道之间的输油管道最小长度总和
int min=0;
for(int i=0;i<n;i++)
	min += (int)fabs(a[i]-a[n/2]);
cout<<min<<endl;

算法2:采用分治策略求中位数

int n;					//油井的数量
int x;					//x坐标,读取后丢弃
int a[1000];				//y坐标
cin>>n;
for (int i=0; i<n; i++)
	cin>>x>>a[i];
int y = select(0, n-1, n/2); //采用分治算法计算中位数。快速排序中的分割算法
//计算各油井到主管道之间的输油管道最小长度总和
int min=0;
for(int i=0;i<n;i++)
	min += (int)fabs(a[i]-y);
cout<<min<<endl;

原文地址:https://www.cnblogs.com/khnl/p/11639313.html

时间: 2024-10-17 18:22:44

算法分析之输油管道问题的相关文章

算法分析的正确姿势

[本系列博文会对常见的数据结构及相应算法进行分析与总结,并会在每篇博文中提供几道相关的一线互联网企业面试/笔试题来巩固所学及帮助我们查漏补缺.项目地址:https://github.com/absfree/Algo.由于个人水平有限,叙述中难免存在不清晰准确的地方,希望大家可以指正,谢谢大家:)] 一.前言 在进一步学习数据结构与算法前,我们应该先掌握算法分析的一般方法.算法分析主要包括对算法的时空复杂度进行分析,但有些时候我们更关心算法的实际运行性能如何,此外,算法可视化是一项帮助我们理解算法

算法分析与设计复习

算法分析与设计复习 2016年初,研一上学期期末考试前,复习并总结算法分析与设计科目的内容.复习过程参照<算法导论>中文第2版,同时参照PPT,章节划分根据PPT内容 概要: 第一章 概述 第二章 插入排序&分治策略 第三章 复杂度分析 第四章 堆与堆排序 第五章 快速排序 第六章 线性时间排序 第一章 概述 算法的应用范围 算法在诸如生物等诸多领域有其应用 算法的意义 算法在很多情况下让不可能完成的事情变成了可能,让处理的很慢的过程变快. 一个铺垫 一串不全为0的数,怎么取能拿到一段

拓扑排序之变量序列算法分析

拓扑排序之变量序列 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 题目描述: 假设有n个变量(1<=n<=26,变量名用单个小写字母表示),还有m个二元组(u,v),分别表示变量u小于v.那么,所有变量从小到大排列起来应该是什么样子的呢? 例如有4个变量a,b,c,d,若以知a<b,c<b,d<c,则这4个变量的排序可能是a<d<c<b.尽管还有可能其他的可能,你只需找出其中的一个即可. 输入: 输入为一

某某水表-M1卡数据算法分析

# 某某水表-M1卡数据算法分析 ## 卡片数据-----------------------------扇区数据 | 金额:--- |:---13EC 0000 0000 0000 0000 0000 03EB BD1B | 51.0013E7 0000 0000 0000 0000 0000 03F0 AD2B | 50.9513E2 0000 0000 0000 0000 0000 03F5 AD2B | 50.8513DD 0000 0000 0000 0000 0000 03FA 9D

算法分析

算法就是一系列解决问题的指令,对于给定的输入,能够在有限时间内获得预期的输出.一个好的算法和一篇好的文章一样,都是不断努力,反复修正的结果.算法分析主要从运行时间和存储空间两方面讨论算法的效率.相信有些人会有跟我一样的感觉,对于一些算法,有时我们一眼就能看出它的时间复杂度,但就是无法比较规范的表达出来.本文就系统的整理一下如何规范推导算法的时间和空间复杂度. 算法分析的一个依据是,输入规模(又称问题规模,记为 n),根据直觉,程序的运行时间随着问题规模的增大而变长.那么怎么衡量程序的运行时间呢?

[MD5变形算法练习] AutoRun Design Specialty算法分析

[破文标题][MD5变形算法练习] AutoRun Design Specialty算法分析[破文作者]静心学习[作者邮箱][email protected][作者主页]http://www.cnblogs.com/dacainiao/[破解工具]OD, DEDE, IDA[破解平台]xp sp3[软件名称]AutoRun Design Specialty[软件大小]6.98MB[原版下载]http://www.alleysoft.com/autorundesignspecialty/ARDSS

数据结构与算法分析绪论

数据结构+算法=程序 逻辑结构:集合.线性.树.图 物理结构:顺序.链式 算法分析: (渐进)时间复杂度: 基本语句的执行次数(基本语句:执行次数与整个算法执行次数成正比的语句,通常是最内层循环的循环体) 非递归:找执行次数最大的基本语句放入大O: 递归:(迭代法)可迭代的展开方程的右边,直到没有可以迭代的项为止,这时通过对右边的和进行估算来估计方程的解http://www.cnblogs.com/python27/archive/2011/12/09/2282486.html 最好情况.最坏情

数据结构1:数据结构和算法分析

问题引出 假设有一道题目:有一组N个数而要确定其中第k个最大者,我们称之为选择问题,那么这个程序如何编写?最直观地,至少有两种思路: 1.将N个数读入一个数组中,再通过某种简单的算法,比如冒泡排序法,以递减顺序将数组排序,则第k个位置上的元素就是我们需要的元素 2.稍微好一些的做法,将k个元素读入数组并以递减顺序排序,接着将接下来的元素再逐个读入,当新元素被读到时,如果它小于数组中的第k个元素则忽略之,否则将其放到数组中正确的位置上,同时将数组中的一个元素挤出数组,当算法终止时,位于第k个位置上

数据结构与算法:算法分析

目录 实验研究 常用函数 渐近分析  一.实验研究(Experimental studies) 1.运行时间测量 时钟时间 time.time() CPU时间 time.clock() 基准时间 timeit.timeit() 在执行算法的时候,我们可以通过改变输入规模的大小和记录花费的时间来研究运行时间. 在python中使用time模块的time函数来记录算法的运行时间: from time import time start_time=time() run algorithm end_ti