python大数据挖掘和分析的套路

数据分析流程

  一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:

  数据获取:公开数据、Python爬虫

  外部数据的获取方式主要有以下两种。

  第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。

  另一种获取外部数据的方式就是爬虫。

  比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

  在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………

  以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。

  掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。

  数据存取:SQL语言

  在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。

  SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:

  提取特定情况下的数据

  数据库的增、删、查、改

  数据的分组聚合、如何建立多个表之间的联系

  数据预处理:Python(pandas)

  很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

  对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

  选择:数据访问

  缺失值处理:对缺失数据行进行删除或填充

  重复值处理:重复值的判断与删除

  异常值处理:清除不必要的空格和极端、异常数据

  相关操作:描述性统计、Apply、直方图等

  合并:符合各种逻辑关系的合并操作

  分组:数据划分、分别执行函数、数据重组

  Reshaping:快速生成数据透视表

  概率论及统计学知识

  需要掌握的知识点如下:

  基本统计量:均值、中位数、众数、百分位数、极值等

  其他描述性统计量:偏度、方差、标准差、显着性等

  其他统计知识:总体和样本、参数和统计量、ErrorBar

  概率分布与假设检验:各种分布、假设检验流程

  其他概率论知识:条件概率、贝叶斯等

  有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。

  Python 数据分析

  掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:

  回归分析:线性回归、逻辑回归

  基本的分类算法:决策树、随机森林……

  基本的聚类算法:k-means……

  特征工程基础:如何用特征选择优化模型

  调参方法:如何调节参数优化模型

  Python 数据分析包:scipy、numpy、scikit-learn等

  在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。

  当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。

  然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。

  你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。

原文地址:https://www.cnblogs.com/chen-jun552/p/11641914.html

时间: 2024-10-11 23:21:54

python大数据挖掘和分析的套路的相关文章

旅游研究院大数据挖掘与分析科研平台建设方案

一. 背景 一.1 数据挖掘和大数据分析行业背景和发展趋势 移动互联网.电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长.根据 IDC <数字宇宙>(Digital Universe)研究报告显示,2020 年全球新建和复制的信息量已经超过 40ZB,是2015年的12倍;而中国的数据量则会在2020年超过8ZB,比2015年增长22倍.数据量的飞速增长带来了大数据技术和服务市场的繁荣发展.IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服

python大数据挖掘系列之淘宝商城数据预处理实战

数据清洗: 所谓的数据清洗,就是把一些异常的.缺失的数据处理掉,处理掉不一定是说删除,而是说通过某些方法将这个值补充上去,数据清洗目的在于为了让我们数据的可靠,因为脏数据会对数据分析产生影响.拿到数据后,我们进行数据清洗分为两方面: 缺失值发现:可以查找 异常值发现:画图分析 缺失值:在下载数据.搜集数据的时候刚好就缺失.可以通过查找的方法去发现. 异常值:不一定就是异常,可能就是客观存在,但是这个值对于总的数据来说是一个就比较特殊点.可以通过画散点图发现. 这两方面的处理方法如下: 缺失值处理

大数据分析- 基于Hadoop/Mahout的大数据挖掘

随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop平台.Hadoop在可伸缩性.健壮性.计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台. 一.培训对象 1,系统架构师.系统分析师.高级程序员.资深开发人员. 2,牵涉到大数据处理的数据中心运行.规划.设计负责人. 3

灵玖软件:大数据挖掘技术比数据更重要

数据与信息是重要的生产要素和战略资产,已在全球达成共识.然而,失去控制和无组织的数据和信息却不能很好地发挥战略资产的作用.信息挖掘是对文献.数据等信息资源对象进行分类.标引.描述.揭示,使之有序化.系统化的过程,其目的恰好是将无序的.分散的数据和信息整理成有序的信息资源,保证用户的有效获取和利用.因此,信息挖掘对于大数据资源的管理与利用具有重要作用. 同时,当前的大数据环境给信息挖掘带来了巨大的影响.正确地识别这些影响,对于凝练信息挖掘的研究方向.使其适应当前的发展环境.与国家的重大需求对接.为

Hadoop大数据挖掘从入门到进阶实战

1.概述 大数据时代,数据的存储与挖掘至关重要.企业在追求高可用性.高扩展性及高容错性的大数据处理平台的同时还希望能够降低成本,而Hadoop为实现这些需求提供了解决方案.面对Hadoop的普及和学习热潮,笔者愿意分享自己多年的开发经验,带领读者比较轻松地掌握Hadoop数据挖掘的相关知识.这边是笔者编写本书的原因.本书使用通俗易懂的语言进行讲解,从基础部署到集群管理,再到底层设计等内容均由涉及.通过阅读本书,读者可以较为轻松地掌握Hadoop大数据挖掘与分析的相关技术. 本书目前已在网上商城上

如何从0开始学习大数据挖掘分析?

最近有很多人咨询,想学习大数据,但不知道怎么入手,从哪里开始学习,需要学习哪些东西?对于一个初学者,学习大数据挖掘分析的思路逻辑是什么?本文就梳理了如何从0开始学习大数据挖掘分析,学习的步骤思路,可以给大家一个学习的建议. 很多人认为数据挖掘需要掌握复杂高深的算法,需要掌握技术开发,才能把数据挖掘分析做好,实际上并非这样.如果钻入复杂算法和技术开发,只能让你走火入魔,越走越费劲,并且效果不大.在公司实际工作中,最好的大数据挖掘工程师一定是最熟悉和理解业务的人.对于大数据挖掘的学习心得,作者认为学

大数据系统和分析技术综述【程学旗】

本文结构 1 大数据处理与系统 1.1 批量数据处理系统 1.1.1 批量数据的特征与典型应用 1.1.2 代表性的处理系统 1.2 流式数据处理系统 1.2.1 流式数据的特征及典型应用 1.2.2 代表性的处理系统 1.3 交互式数据处理 1.3.1 交互式数据处理的特征与典型应用 1.3.2 代表性的处理系统 1.4 图数据处理系统 1.4.1 图数据的特征及典型应用 1.4.2 代表性图数据处理系统 1.5 小 结 2 大数据分析 2.1 深度学习 2.2 知识计算 2.3 社会计算 2

一站式大数据敏捷分析平台

OpenFEA是一站式大数据敏捷分析系统,融合了内存计算.集群运算.机器学习.交互分析.可视化分析等技术,涵盖数据收集.数据探索.构建模型.模型发布等功能,分析性能卓越,使用简便,无需复杂编程即可快速实现大数据分析,助力数据分析师激扬数据,塑造业务标杆.          数据收集         OpenFEA能够融合更多类型的数据来进行运算,支持关系型数据源. Hadoop数据源.数据文件.第三方数据源. 支持数据源与接口/格式的双向自定义机制.表示各种复杂结构或LOAD和STORE各类数据

利用 Python 练习数据挖掘

覆盖使用Python进行数据挖掘查找和描述数据结构模式的实践工具. 第一节 介绍 数据挖掘是一个隐式提取以前未知的潜在有用的数据信息提取方式.它使用广泛,并且是众多应用的技术基础. 本文介绍那些使用Python数据挖掘实践用于发现和描述结构模式数据的工具.近些年来,Python在开发以数据为中心的应用中被用的越来越多.感谢大型科学计算社区的支持以及大大丰富的数据分析函数库.尤其是,我们可以看到如何: ? 导入和可视化数据 ? 数据分类 ? 使用回归分析和相关测量法发现数据之间的关系 ? 数据降维